
User’s Guide
Version 2

For Use with Real-Time Workshop®

xPC Target

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

xPC Target User’s Guide
 COPYRIGHT 1999 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)

i

Contents

1
Target and Scope Objects

Target Objects . 1-2
What Is a Target Object? . 1-2

Scope Objects . 1-3
What Is a Scope Object? . 1-3

2
Targets and Scopes in the MATLAB Interface

Working with Target Objects . 2-2
Creating Target Objects . 2-2
Deleting Target Objects . 2-3
Displaying Target Object Properties . 2-3
Setting Target Object Properties from the Host PC 2-4
Resetting Target Application Parameters to Previous Values . 2-5
Getting the Value of a Target Object Property 2-6
Using the Method Syntax with Target Objects 2-7

Working with Scope Objects . 2-8
Displaying Scope Object Properties for a Single Scope 2-8
Displaying Scope Object Properties for All Scopes 2-9
Setting the Value of a Scope Property . 2-9
Getting the Value of a Scope Property 2-10
Using the Method Syntax with Scope Objects 2-11
Acquiring Signal Data with Scopes of Type File 2-12
Advanced Data Acquisition Topics . 2-13

ii Contents

3
Signals and Parameters

Monitoring Signals . 3-2
Signal Monitoring with xPC Target Explorer 3-2
Signal Monitoring with MATLAB . 3-5

Signal Tracing . 3-7
Signal Tracing with xPC Target Explorer 3-7
Signal Tracing with MATLAB . 3-17
Signal Tracing with xPC Target Scope Blocks 3-25
Signal Tracing with a Web Browser . 3-26

Signal Logging . 3-28
Signal Logging with xPC Target Explorer 3-28
Signal Logging with MATLAB . 3-30
Signal Logging with a Web Browser . 3-34

Parameter Tuning . 3-35
Parameter Tuning with xPC Target Explorer 3-35
Parameter Tuning with MATLAB . 3-38
Parameter Tuning with Simulink External Mode 3-40
Parameter Tuning with a Web Browser 3-42
Saving and Reloading Application Parameters with MATLAB 3-43

iii

4
xPC Target Explorer

Introduction . 4-2
Before You Start . 4-2

Specifying Target PC Configurations 4-4
Configuring Environment Parameters for Target PCs 4-4
Creating a Target PC Boot Disk . 4-5

Preparing Target PCs for xPC Target System Use 4-8
Installing Software, Booting a Target PC, and Testing the
Target PC . 4-8

Downloading and Running Target Applications 4-10
Changing the Prebuilt Target Application (DLM) Directory . 4-10
Downloading Target Applications to a Target PC 4-11
Running the Target Application . 4-13

Control with xPC Target Explorer . 4-15
Manipulating Target Application Properties 4-15

Menu Bar and Toolbar Contents and Shortcut Keys 4-17

5
Embedded Option

Introduction . 5-2

xPC Target Embedded Option Modes 5-3
DOSLoader Mode Overview . 5-4
StandAlone Mode Overview . 5-5
Restrictions . 5-7

Embedded Option Setup . 5-9
Updating the xPC Target Environment 5-9
Creating a DOS System Disk . 5-11

iv Contents

DOSLoader Target Setup . 5-12
Updating Environment Properties and Creating a Boot Disk 5-12
Copying the Kernel to Flash Memory . 5-14
Creating a Target Application for DOSLoader Mode 5-16

Stand-Alone Target Setup . 5-17
Updating Environment Properties . 5-17
Adding Target Scope Blocks to Stand-Alone Applications . . . 5-18
Creating a Kernel/Target Application 5-21
Copying the Kernel/Target Application to Flash Disk 5-22

6
Software Environment and Demos

Using Environment Properties and Functions 6-2
Getting a List of Environment Properties 6-2
Changing Environment Properties with a Graphical Interface 6-3
Changing Environment Properties with a Command-Line
Interface . 6-5

xPC Target Demos . 6-6
To Locate or Edit a Demo Script . 6-6

7
Using the Target PC Command-Line Interface

Target PC Command-Line Interface . 7-2
Using Target Application Methods on the Target PC 7-2
Manipulating Target Object Properties from the Target PC . . 7-3
Manipulating Scope Objects from the Target PC 7-4
Manipulating Scope Object Properties from the Target PC . . . 7-6
Aliasing with Variable Commands on the Target PC 7-6

v

8
Working with Target PC Files and File Systems

Introduction . 8-2

FTP and File System Objects . 8-4

Using xpctarget.ftp Objects . 8-5
Listing the Contents of the Target PC Directory 8-5
Retrieving a File from the Target PC to the Host PC 8-6
Copying a File from the Host PC to the Target PC 8-7

Using xpctarget.fs Objects . 8-8
Retrieving the Contents of a File from the Target PC to the
Host PC . 8-9
Removing a File from the Target PC . 8-11
Getting a List of Open Files on the Target PC 8-11
Getting Information about a File on the Target PC 8-12
Getting Information about a Disk on the Target PC 8-13

9
Graphical User Interfaces

xPC Target Interface Blocks to Simulink Models 9-2
Simulink User Interface Model . 9-2
Creating a Custom Graphical Interface 9-4
To xPC Target Block . 9-4
From xPC Target Block . 9-6

vi Contents

Interface with Dials & Gauges Blockset 9-8
Introduction to the Dials & Gauges Blockset 9-8
Target Application Model Description 9-11
Creating a Target Application Model . 9-12
Description of the User Interface Model 9-18
Creating a User Interface Model . 9-19
Adding Dials & Gauges Blockset . 9-20
Creating a Target Application . 9-21
Running a Target Application with a User Interface Model . . 9-23

10
xPC Target Web Browser Interface

Web Browser Interface . 10-2
Connecting the Web Interface Through TCP/IP 10-2
Connecting the Web Interface Through RS-232 10-3
Using the Main Pane . 10-6
Changing WWW Properties . 10-9
Viewing Signals with a Web Browser 10-10
Viewing Parameters with a Web Browser 10-11
Changing Access Levels to the Web Browser 10-11

11
Interrupts Versus Polling

Polling Mode . 11-2
xPC Target Kernel Polling Mode . 11-2
Interrupt Mode . 11-2
Polling Mode . 11-4
Setting the Polling Mode . 11-6
Restrictions Introduced by Polling Mode 11-8
Controlling the Target Application . 11-12
Polling Mode Performance . 11-13

vii

12
xPC Target and Fortran

Introduction . 12-2
Simulink Demos Directory . 12-2
Prerequisites . 12-3
Steps to Incorporate Fortran in Simulink for xPC Target 12-3

Step-by-Step Example of Fortran and xPC Target 12-5
Creating an xPC Target Atmosphere Model for Fortran 12-5
Compiling Fortran Files . 12-7
Creating a C-MEX Wrapper S-Function 12-9
Compiling and Linking the Wrapper S-Function 12-9
Validating the Fortran Code and Wrapper S-Function 12-10
Preparing the Model for the xPC Target Application Build . 12-11
Building and Running the xPC Target Application 12-13

13
Troubleshooting

General Troubleshooting Hints and Tips 13-2

Installation, Configuration, and Test Troubleshooting . . 13-6

Advanced Troubleshooting . 13-12

14
Target PC Command-Line Interface Reference

Target PC Commands . 14-2
Target Object Methods . 14-3
Target Object Property Commands . 14-3
Scope Object Methods . 14-5
Scope Object Property Commands . 14-8
Aliasing with Variable Commands . 14-10

viii Contents

15
Obsoleted xPC Target User Interfaces

xPC Setup . 15-2
Environment Properties for Serial Communication 15-2
Environment Properties for Network Communication 15-4
Creating an xPC Target Boot Disk . 15-7
Changing Environment Properties with a Graphical Interface 15-8
Saving and Loading the Environment Properties 15-10

Control with xPC Target Remote Control Tool 15-12
Signal Tracing with xPC Target Remote Control Tool 15-14
Signal Logging with xPC Target Remote Control Tool 15-25
Parameter Tuning with xPC Target Remote Control Tool . . 15-26

16
Function Reference

Functions — Categorical List . 16-2
Software Environment . 16-2
GUI . 16-3
Test . 16-3
Target Objects . 16-3
Scope Objects . 16-6
File and File System Objects . 16-7

Functions — Alphabetical List . 16-10

Index

1

Target and Scope Objects

Before you can work with xPC Target target and scope objects, you should understand the concept of
target and scope objects.

Target Objects (p. 1-2) Description of target objects

Scope Objects (p. 1-3) Description of scope objects

1 Target and Scope Objects

1-2

Target Objects
xPC Target uses a target object (of class xpctarget.xpc) to represent the
target kernel and your target application. Use target object functions to run
and control real-time applications on the target PC with scope objects to collect
signal data.

See Chapter 16, “Function Reference,” for a reference of the target functions.

What Is a Target Object?
An understanding of the target object properties and methods will help you to
control and test your application on the target PC.

A target object on the host PC represents the interface to a target application
and the kernel on the target PC. You use target objects to run and control the
target application.

When you change a target object property on the host PC, information is
exchanged with the target PC and the target application.

To create a target object,

• Build a target application. xPC Target creates a target object during the
build process.

• Use the target object constructor function xpc. In the MATLAB® window,
type tg = xpctarget.xpc.

Target objects are of class xpctarget.xpc. A target object has associated
properties and methods specific to that object.

Scope Objects

1-3

Scope Objects
xPC Target uses scope objects to represent scopes on the target PC. Use scope
object functions to view and collect signal data.

See Chapter 16, “Function Reference,” for a reference of the scope functions.

What Is a Scope Object?
xPC Target uses scopes and scope objects as an alternative to using Simulink®
scopes and external mode. A scope can exist as part of a Simulink model system
or outside a model system:

• A scope that is part of a Simulink model system is a scope block. You add an
xPC Target scope block to the model, build an application from that model,
and download that application to the target PC.

• A scope that is outside a model is not a scope block. For example, if you create
a scope with the addscope method, that scope is not part of a model system.
You add this scope to the model after the model has been downloaded and
initialized.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the
containing subsystem executes. Note that in the latter case, the scope might
acquire samples at irregular intervals.

A scope that is not part of a model always executes at the base sample time of
the model. Thus, it might acquire repeated samples. For example, if the model
base sample time is 0.001, and you add to the scope a signal whose sample time
is 0.005, the scope will acquire five identical samples for this signal, and then
the next five identical samples, and so on.

Understanding the structure of scope objects will help you to use the MATLAB
command-line interface to view and collect signal data. The topics in this
section are

Refer to Chapter 1, “Target and Scope Objects,” for a description of how to use
these objects, properties, and methods.

1 Target and Scope Objects

1-4

A scope object on the host PC represents a scope on the target PC. You use
scope objects to observe the signals from your target application during a
real-time run or analyze the data after the run is finished.

To create a scope object,

• Add an xPC Target scope block to your Simulink model, build the model to
create a scope, and then use the target object method getscope to create a
scope object.

• Use the target object method addscope to create a scope, create a scope
object, and assign the scope properties to the scope object.

A scope object has associated properties and methods specific to that object.

The following section describes scope object types.

Scope Object Types
You can create scopes of type target, host, or file. Upon creation, xPC Target
assigns the appropriate scope object data type for the scope type:

• xpctarget.xpcsctg for scopes of type target

• xpctarget.xpcschost for scopes of type host

• xpctarget.xpcfs for scopes of type file

• xpctarget.xpcsc encompasses the object properties common to all the scope
object data types. xPC Target creates this object if you create multiple scopes
of different types for one model and combine those scopes, for example, into
a scope vector.

Each scope object type has a group of object properties particular to that object
type.

The xpcsctg scope object of type target has the following object properties:

• Grid

• Mode

• YLimit

Scope Objects

1-5

The xpcschost scope object of type host has the following object properties:

• Data

• StartTime

• Time

The xpcfs scope object of type file has the following object properties:

• AutoRestart

• Filename

• Mode

• StartTime

• WriteSize

The xpcsc scope object has the following object properties. The other scope
objects have these properties in common:

• Application

• Decimation

• NumPrePostSamples

• NumSamples

• ScopeId

• Status

• TriggerLevel

• TriggerMode

• TriggerSample

• TriggerScope

• TriggerSignal

• TriggerSlope

• Type

See the scope object function get (scope object) on page 16-29 for a
description of these object properties.

1 Target and Scope Objects

1-6

2
Targets and Scopes in the
MATLAB Interface

You can work with xPC Target target and scope objects through the MATLAB interface (MATLAB
Command Window), the target PC command line, a Web browser, or an xPC Target API. This
chapter describes how to use the MATLAB interface to work with the target and scope objects in the
following topics.

See Chapter 7, “Using the Target PC Command-Line Interface,” for a description of the target PC
command-line interface.

Working with Target Objects (p. 2-2) Use the MATLAB Command Window to change
properties and use methods to control the target PC and
your target application

Working with Scope Objects (p. 2-8) Use the MATLAB Command Window to change
properties and use methods for signal logging and signal
tracing

2 Targets and Scopes in the MATLAB Interface

2-2

Working with Target Objects
This topic describes how to work with target objects using target object
functions.

• “Creating Target Objects” on page 2-2

• “Deleting Target Objects” on page 2-3

• “Displaying Target Object Properties” on page 2-3

• “Setting Target Object Properties from the Host PC” on page 2-4

• “Resetting Target Application Parameters to Previous Values” on page 2-5

• “Getting the Value of a Target Object Property” on page 2-6

• “Using the Method Syntax with Target Objects” on page 2-7

See Chapter 16, “Function Reference,” for a reference of the target object
functions.

Creating Target Objects
To create a target object,

• Build a target application. xPC Target creates a target object during the
build process.

• To create a single target object, or to create the first of many targets in your
system, use the target object constructor function xpctarget.xpc as follows.
In the MATLAB Command Window, type

tg = xpctarget.xpc

The resulting target object is tg.

• To create multiple target objects in your system, use the target object
constructor function xpc (see xpctarget.xpc on page 16-117) as follows. For
example, the following creates a target object connected to the host through
an RS-232 connection. In the MATLAB window, type

tg1 = xpctarget.xpc('rs232', 'COM1', '115200')

The resulting target object is tg1.

Working with Target Objects

2-3

To check a connection between a host and a target, use the target function
targetping. For example,

tg.targetping

Deleting Target Objects
To delete a target object, use the target object destructor function delete. In
the MATLAB window, type

tg.delete

If there are any scopes still associated with the target, this function removes
all those scope objects as well.

Displaying Target Object Properties
You might want to list the target object properties to monitor a target
application. The properties include the execution time and the average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default target
object name tg as an example:

1 In the MATLAB window, type
tg

The current target application properties are uploaded to the host PC, and
MATLAB displays a list of the target object properties with the updated
values.

Note that the target object properties for TimeLog, StateLog, OutputLog, and
TETLog are not updated at this time.

2 Type

+tg

The Status property changes from stopped to running, and the log
properties change to Acquiring.

For a list of target object properties with a description, see the target object
function get (target object) on page 16-38

2 Targets and Scopes in the MATLAB Interface

2-4

Setting Target Object Properties from the Host PC
You can change a target object property by using xPC Target methods on the
host PC.

With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(target_object, property_name,
new_property_value) can be replaced by

target_object.property_name = new_property_value

For example, to change the stop time mode for the target object tg,

1 In the MATLAB window, type

tg.stoptime = 1000

2 Alternatively, you can type

set(tg, 'stoptime', 1000)

When you change a target object property, the new property value is
downloaded to the target PC. The xPC Target kernel then receives the
information and changes the behavior of the target application.

To get a list of the writable properties, type set(target_object). The build
process assigns the default name of the target object to tg.

Parameters are not target object properties. To change the frequency of the
signal generator in the model xpcosc,

1 In the MATLAB window, type

setparam(tg,2,30)

The setparam method returns a result like the following:

ans =
parIndexVec: 2
OldValues: 20
NewValues: 30

Working with Target Objects

2-5

Note Method names are case sensitive and need to be complete, but property
names are not case sensitive and need not be complete as long as they are
unique.

Resetting Target Application Parameters to
Previous Values
You can reset parameters to preceding target object property values by using
xPC Target methods on the host PC. The setparam method returns a structure
that stores the parameter index, the previous value, and the new value. If you
expect to want to reset parameter values, set the setparam method to a
variable. This variable points to a structure that stores the parameter index,
and the old and new parameter values for it.

1 In the MATLAB window, type

pt=setparam(tg,2,30)

The setparam method returns a result like the following:

pt =
parIndexVec: 2
OldValues: 20
NewValues: 30

2 To reset to the previous values, type

setparam(tg,pt.parIndexVec,pt.OldValues)

ans =
parIndexVec: 2
OldValues: 30
NewValues: 20

2 Targets and Scopes in the MATLAB Interface

2-6

Getting the Value of a Target Object Property
You can list a property value in the MATLAB window or assign that value to a
MATLAB variable. With xPC Target you can use either a function syntax or an
object property syntax.

The syntax get(target_object, property_name) can be replaced by

target_object.property_name

For example, to access the start time,

1 In the MATLAB window, type

endrun = tg.stoptime

2 Alternatively, you can type

endrun = get(tg,'stoptime') or tg.get('stoptime')

To get a list of readable properties, type target_object. Without assignment
to a variable, the property values are listed in the MATLAB window.

Signals are not target object properties. To get the value of the Integrator1
signal from the model xpcosc,

1 In the MATLAB window, type

outputvalue= getsignal (tg,0)

2 Alternatively, you could type

tg.getsignal(0)

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Working with Target Objects

2-7

Using the Method Syntax with Target Objects
Use the method syntax to run a target object method. The syntax
method_name(target_object, argument_list) can be replaced with

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
you must enter method names in full, and in lowercase. For example, to add a
scope of type target with a scope index of 1,

1 In the MATLAB window, type

tg.addscope('target',1)

2 Alternatively, you can type

addscope(tg, 'target', 1)

2 Targets and Scopes in the MATLAB Interface

2-8

Working with Scope Objects
This topic describes how to work with scope objects using scope object
functions.

• “Displaying Scope Object Properties for a Single Scope” on page 2-8

• “Displaying Scope Object Properties for All Scopes” on page 2-9
• “Setting the Value of a Scope Property” on page 2-9
• “Getting the Value of a Scope Property” on page 2-10
• “Using the Method Syntax with Scope Objects” on page 2-11

• “Acquiring Signal Data with Scopes of Type File” on page 2-12

• “Acquiring Gap-Free Data Using Two Scopes” on page 2-17

• “Acquiring Gap-Free Data Using Two Scopes” on page 2-17

See Chapter 16, “Function Reference,” for a reference of the scope object
functions.

Displaying Scope Object Properties for a Single
Scope
To list the properties of a single scope object, sc1,

1 In the MATLAB window, type
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type
sc1

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type
sc1(1) or sc1([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Working with Scope Objects

2-9

For a list of target object properties with a description, see the target function
get (target object) on page 16-38.

Displaying Scope Object Properties for All Scopes
To list the properties of all scope objects associated with the target object tg,

1 In the MATLAB window, type
getscope(tg) or tg.getscope

MATLAB displays a list of all scope objects associated with the target object.

2 Alternatively, type
allscopes = getscope(tg)

or type

allscopes = tg.getscope

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of all the scope object properties with the updated
values. To list some of the scopes, use the vector index. For example, to list
the first and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see the target function
get (target object) on page 16-38

Setting the Value of a Scope Property
With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(scope_object, property_name,
new_property_value) can be replaced by

scope_object(index_vector).property_name = new_property_value

For example, to change the trigger mode for the scope object sc1,

1 In the MATLAB window, type

sc1.triggermode = 'signal'

2 Alternatively, you can type

2 Targets and Scopes in the MATLAB Interface

2-10

set(sc1,'triggermode', 'signal')

or type

sc1.set('triggermode', 'signal')

Note that you cannot use dot notation to set vector object properties. To assign
properties to a vector of scopes, use the set method. For example, assuming you
have a variable sc12 for two scopes, 1 and 2, set the NumSamples property of
these scopes to 300:

1 In the MATLAB window, type

set(sc12,'NumSamples',300)

To get a list of the writable properties, type set(scope_object).

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Getting the Value of a Scope Property
You can list a property value in the MATLAB window or assign that value to a
MATLAB variable. With xPC Target you can use either a function syntax or an
object property syntax.

The syntax get(scope_object_vector, property_name) can be replaced by

scope_object_vector(index_vector).property_name

For example, to assign the start time from the scope object sc1,

1 In the MATLAB window, type

beginrun = sc1.starttime

2 Alternatively, you can type

beginrun = get(sc1,'starttime')

or type

Working with Scope Objects

2-11

sc1.get('starttime')

Note that you cannot use dot notation to get the values of vector object
properties. To get properties of a vector of scopes, use the get method. For
example, assume you have two scopes, 1 and 2, assigned to the variable sc12.

To get the value of NumSamples for these scopes,

In the MATLAB window, type

get(sc12,'NumSamples')

You get a result like the following

ans =
 [300]
 [300]

To get a list of readable properties, type scope_object. The property values are
listed in the MATLAB window.

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Using the Method Syntax with Scope Objects
Use the method syntax to run a scope object method. The syntax
method_name(scope_object_vector, argument_list) can be replaced with

• scope_object.method_name(argument_list)
• scope_object_vector(index_vector).method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
method names you must enter in full, and in lowercase. For example, to add
signals to the first scope in a vector of all scopes,

1 In the MATLAB window, type

allscopes(1).addsignal([0,1])

2 Targets and Scopes in the MATLAB Interface

2-12

2 Alternatively, you can type

addsignal(allscopes(1), [0,1])

Acquiring Signal Data with Scopes of Type File
You can acquire signal data into a file on the target PC. To do so, you add a
scope of type file to the application. After you build an application and
download it to the target PC, you can add a scope of type file to that
application.

For example, to add a scope of type file named sc to the application, and to
add signal 4 to that scope,

1 In the MATLAB window, type

sc=tg.addscope('file')

xPC Target creates a scope of type file for the application.

2 Type

sc.addsignal(4)

xPC Target adds signal 4 to the scope of type file. When you start the scope
and application, the scope saves the signal data for signal 4 to a file, by
default named C:\data.dat.

See “Scope of Type File” on page 3-26 in Chapter 3, “Signals and Parameters,”
for a description of signal tracing with scopes of type file.

Working with Scope Objects

2-13

Advanced Data Acquisition Topics
The moment that an xPC Target scope begins to acquire data is user
configurable. You can have xPC Target scopes acquire data right away, or
define triggers for scopes such that the xPC Target scopes wait until they are
triggered to acquire data. You can configure xPC Target scopes to start
acquiring data when the following scope trigger conditions are met. These are
known as trigger modes:

• Freerun — Starts to acquire data as soon as the scope is started (default)

• Software — Starts to acquire data in response to a user request. You
generate a user request when you call the scope method trigger or the scope
function xPCScSoftwareTrigger

• Signal — Starts to acquire data when a particular signal has crossed a
preset level

• Scope — Starts to acquire data based on when another (triggering) scope
starts

You can use several properties to further refine when a scope acquires data.
For example, if you set a scope to trigger on a signal (Signal trigger mode), you
can configure the scope to specify the following:

• The signal to trigger the scope (required)

• The trigger level that the signal must cross to trigger the scope to start
acquiring data

• Whether the scope should trigger on a rising signal, falling signal, or either
one

In the following topics, the trigger point is the sample during which the scope
trigger condition is satisfied. For signal triggering, the trigger point is the
sample during which the trigger signal passes through the trigger level. At the
trigger point, the scope acquires the first sample. By default, scopes start
acquiring data from the trigger point onwards. You can modify this behavior
using the pre- and posttriggering.

• Pre-triggering — Starts to acquire data N moments before a trigger occurs

• Post-triggering — Starts to acquire data N moments after a trigger occurs

2 Targets and Scopes in the MATLAB Interface

2-14

The NumPrePostSamples scope property controls the pre- and posttriggering
operation. This property specifies the number of samples to be collected before
or after a trigger event.

• If NumPrePostSamples is a negative number, the scope is in pretriggering
mode, where it starts collecting samples before the trigger event.

• If NumPrePostSamples is a positive number, the scope is in a posttriggering
mode, where it starts collecting samples after the trigger event.

The following topics describe two examples of acquiring data.

• “Triggering One Scope with Another Scope to Acquire Data” on page 2-14 —
Describes a configuration of one scope to trigger another using the concept of
pre- and posttriggering

• “Acquiring Gap-Free Data Using Two Scopes” on page 2-17 — Describes how
to apply the concept of triggering one scope with another to acquire gap-free
data

Triggering One Scope with Another Scope to Acquire Data
This section describes the concept of triggering one scope with another to
acquire data. The description uses actual scope objects and properties to
describe triggers.

The ability to have one scope trigger another, and to delay retrieving data from
the second after a trigger event on the first, is most useful when data
acquisition for the second scope is triggered after data acquisition for the first
scope is complete. In the following explanation, Scope 2 is triggered by Scope 1.

• Assume two scopes objects are configured as a vector with the command
sc = tg.addscope('host', [1 2]);

• For Scope 1, set the following values:
- sc(1).ScopeId = 1
- sc(1).NumSamples = N

- sc1.NumPrePostSamples = P

Working with Scope Objects

2-15

• For Scope 2, set the following values:

- sc(2).ScopeId = 2
- sc(2).TriggerMode = 'Scope'
- sc(2).TriggerScope =1

- sc(2).TriggerSample = range 0 to (N + P - 1)

In the figures below, TP is the trigger point or sample where a trigger event
occurs. Scope 1 begins acquiring data as described.

In the simplest case, where P = 0, Scope 1 acquires data right away.

“Pretriggering (P<0)” on page 2-15 illustrates the behavior if P, the value of
NumPrePostSamples, is negative. In this case, Scope 1 starts acquiring data |P|
samples before TP. Scope 2 begins to acquire data only after TP occurs.

Pretriggering (P<0)

“Posttriggering (P>0)” on page 2-16, illustrates the behavior if P, the value of
NumPrePostSamples, is positive. In this case, Scope 1 starts acquiring data |P|
samples after TP occurs.

2 Targets and Scopes in the MATLAB Interface

2-16

Posttriggering (P>0)

Scope 1 triggers Scope 2 after the trigger event occurs. The following describes
some of the ways you can trigger Scope 2:

• sc(2).TriggerSample = 0 — Causes Scope 2 to be triggered when Scope 1
is triggered. TP for both scopes as at the same sample.

• sc(2).TriggerSample = n > 0 — Causes TP for Scope 2 to be n samples after
TP for Scope 1. Note that setting sc(2).TriggerSample to a value larger than
(N + P - 1) does not cause an error; it implies that Scope 2 will never trigger,
since Scope 1 will never acquire more than (N + P - 1) samples after TP.

• sc(2).TriggerSample = 0 < n < (N + P) — Enables you to obtain some of
the functionality that is available with pre- or posttriggering. For example,
if you have the following Scope 1 and Scope 2 settings,

- Scope 1 has sc(1).NumPrePostSamples = 0 (no pre- or posttriggering)

- Scope 2 has sc(2).TriggerSample = 10

- Scope 2 has sc(2).NumPrePostSample = 0

The behavior displayed by Scope 2 is equivalent to having
sc(2).TriggerSample = 0 and sc(2).NumPrePostSamples = 10.

• sc(2).TriggerSample = -1 — Causes Scope 2 to start acquiring data from
the sample after Scope 1 stops acquiring.

Working with Scope Objects

2-17

Note The difference between setting TriggerSample = (N + P - 1), where
N and P are the parameters of the triggering scope (Scope 1) and
TriggerSample = -1 is that in the former case, the first sample of Scope 2 will
be at the same time as the last sample of Scope 1, whereas in the latter, the
first sample of Scope 2 will be one sample after the last sample of Scope 1.
This means that in the former case both scopes acquire simultaneously for one
sample, and in the latter they will never simultaneously acquire.

Acquiring Gap-Free Data Using Two Scopes
With two scopes, you can acquire gap-free data. Gap-free data is data that two
scopes acquire consecutively, with no overlap. The first scope acquires data up
to N, then stops. The second scope begins to acquire data at N+1. This section
provides guidelines for setting up two scopes for gap-free data. This is
functionality that you cannot achieve through pre- or posttriggering.

• Set the TriggerSample property for both scopes to -1. For example,
sc1.TriggerSample = -1
sc2.TriggerSample = -1

• Set the TriggerScope property for each scope so that each is triggered by the
other. For example,

sc1.TriggerScope=2
sc2.TriggerScope=1

• Set the NumSamples property for each scope. For example,

sc1.NumSamples=500
sc2.NumSamples=500

• Set the TriggerMode property for one of the scopes to 'Software'. You must
do this to start the data acquisition. Otherwise, each scope waits for the other
to finish acquiring data, and never starts. In “Acquisition of Gap-Free Data”
on page 2-18, the TriggerMode property of Scope 1 is set to 'Software'. This
allows Scope 1 to be software triggered to acquire data when it receives the
command sc1.trigger.

• Both the scopes receive exactly the same signals, in other words, the signals
you want to retrieve.

2 Targets and Scopes in the MATLAB Interface

2-18

“Acquisition of Gap-Free Data” on page 2-18, illustrates how the scopes trigger
one another.

Acquisition of Gap-Free Data

The following code is a typical example of how you can retrieve gap-free data.
You can type this code into an m file and run that file for a downloaded target
application. This example assumes that the communication speed and number
of samples are fast enough to acquire the full data set before the next
acquisition cycle is due to start. You can also use more than two scopes to
implement a triple- or quadruple-buffering scheme instead of the
double-buffering one illustrated here.

% Assumes that model is built and loaded on target.
tg = xpctarget.xpc;
sc = tg.addscope('target', [1 2]);
addsignal(sc,[0 1]);
% [0 1] are the signals of interest; add to both
% Default value for TriggerSample is 0, need to change it.
set(sc, 'NumSamples', 500, 'TriggerSample', -1)
set(sc, 'TriggerMode', 'Scope');
sc(1).TriggerScope = 2;
sc(2).TriggerScope = 1;
start(sc);
start(tg);

Working with Scope Objects

2-19

sc(1).trigger;
% Start things off by triggering scope 1
data = zeros(0, 2);
t = [];
scNum = 1;
% We will look at scope 1 first
% Use some appropriate condition instead of an infinite loop
while(1)
 % loop until the scope has finished
 while ~strcmp(sc(scNum).Status, 'Finished'), end
 data(end + 1 : end + 500, :) = sc(scNum).Data;
 t(end + 1 : end + 500) = sc(scNum).Time;
 start(sc(scNum));
% Restart the scope
 scNum = 3 - scNum;
% Switch to the next scope
end

2 Targets and Scopes in the MATLAB Interface

2-20

3

Signals and Parameters

Changing parameters in your target application while it is running in real time, and checking the
results by viewing signal data, are two important prototyping tasks. xPC Target includes
command-line and graphical user interfaces to complete these tasks. This chapter includes the
following sections:

This chapter describes xPC Target interactions using a number of interfaces, including xPC Target
Explorer. For additional information on using xPC Target Explorer, see Chapter 4, “xPC Target
Explorer.”

Signal Monitoring with MATLAB
(p. 3-5)

Acquire signal data while running a target application
without time information

Signal Tracing (p. 3-7) Acquire and visualize signals while running a target
application in real time

Signal Logging (p. 3-28) Acquire signal data while running a target application,
and after the run, transfer the data to the host PC for
analysis

Parameter Tuning (p. 3-35) Change parameters in your target application while it is
running in real time

3 Signals and Parameters

3-2

Monitoring Signals
Signal monitoring is the process for acquiring signal data during a real-time
run without time information. The advantage with signal monitoring is that
there is no additional load on the real-time tasks. Use signal monitoring to
acquire signal data without creating scopes that run on the target PC.

After you start running a target application, you can use signal monitoring to
get signal data.

This section has the following topics:

• “Signal Monitoring with xPC Target Explorer” on page 3-2

• “Signal Monitoring with MATLAB” on page 3-5

Signal Monitoring with xPC Target Explorer
This procedure uses the model xpcosc.mdl as an example, and assumes you
created and downloaded the target application to the target PC. For
meaningful values, the target application should be running.

1 In xPC Target Explorer, go to the node of the running target application in
which you are interested. For example, xpcosc.

Monitoring Signals

3-3

2 To get the list of signals in the target application, expand the target
application node, then expand the Model Hierarchy node under the target
application node.

The model hierarchy expands to show the Simulink objects (signals and
parameters) in the Simulink model.

3 Signals and Parameters

3-4

The Model Hierarchy node can have up to three nodes: subsystems ()
(including their signals and parameters), parameters (), and signals ().
Only xPC Target tunable parameters and signals of the application, as
represented in the Simulink model, appear in the Model Hierarchy node.
This example currently has only parameters and signals.

3 To get the value of a signal, select the signal in the Model Hierarchy node.

The value of the signal is shown in the right-hand pane. For example,

Parameters

Signals

application node

Monitoring Signals

3-5

Signal Monitoring with MATLAB
This procedure uses the model xpc_osc3.mdl as an example, and assumes you
created and downloaded the target application to the target PC.

1 To get a list of signals, type either

set(tg, 'ShowSignals', 'On') or tg.ShowSignals='On'

The latter command causes the MATLAB window to display a list of the
target object properties for the available signals. For example, the signals
for the model xpc_osc3.mdl are shown below.

ShowSignals = On
 Signals = INDEX VALUE BLOCK NAME

0 0.000000 Transfer Fcn
1 0.000000 Signal Generator

3 Signals and Parameters

3-6

2 To get the value of a signal, in the MATLAB Command Window, type

tg.getsignal(1)

MATLAB displays the value of signal 1.

ans=
3.731

See also “Signal Tracing with MATLAB” on page 3-17.

Signal Tracing

3-7

Signal Tracing
Signal tracing is the process of acquiring and visualizing signals while running
a target application. In its most basic sense, signal tracing allows you to
acquire signal data and visualize it on the target PC or upload the signal data
and visualize it on the host PC while the target application is running. This
section includes the following topics:

• “Signal Tracing with xPC Target Explorer” on page 3-7 — Use the xPC
Target Explorer to create and run scopes that are displayed on the host PC.

• “Signal Tracing with MATLAB” on page 3-17 — Use the MATLAB Command
Window to create scopes and scope objects.

• “Signal Tracing with xPC Target Scope Blocks” on page 3-25 — Use scopes
of type host to trace signal data triggered by an event while your target
application is running.

• “Signal Tracing with a Web Browser” on page 3-26 — Use Microsoft Explorer
or Netscape Navigator to view signals.

Signal tracing differs from signal logging. With signal logging you can only look
at signals after a run is finished, and the entire log of the run is available. For
information on signal logging, see “Signal Logging” on page 3-28.

Signal Tracing with xPC Target Explorer
Signal tracing is the process of acquiring and visualizing signals while running
a target application. In its most basic sense, signal tracing allows you to
acquire signal data and visualize it on the target PC, or upload the signal data
and visualize it on the host PC, while the target application is running.

The procedures in this topic use the model xpcosc.mdl as an example, and
assume you have created, downloaded, and started the target application to the
target PC.

• “Creating Scopes” on page 3-8 — Create scopes on the host PC and target PC
to visualize the data.

• “Adding Signals to Scopes” on page 3-11 — Add signals to the scopes and
start the scopes.

• “Stopping Scopes” on page 3-15 — Stop the scopes.

3 Signals and Parameters

3-8

You can add or remove signals from scopes of type target or host while the scope
is either stopped or running. For scopes of type file, you must stop the scope
first before adding or removing signals.

Creating Scopes

1 In xPC Target Explorer, right-click the downloaded target application node.
For example, xpcosc.

2 Select Start.

3 To get the list of signals in the target application, expand the Model
Hierarchy node under the target application.

The model hierarchy expands to show the elements in the Simulink model.

4 To get the list of scope types you can have in the target application, expand
the xPC Scopes node below the application node.

The xPC Scopes node expands to show the possible scope types a target
application can have.

Signal Tracing

3-9

5 To create a scope to display on the target PC, right-click Target Scopes from
the xPC Scopes node.

A dialog appears. This dialog lists the operations you can perform on target
PC scopes. For example, within the current context, you can create a target
PC scope.

6 Select Add Target Scope.

A scope node appears under Target Scopes. In this example, the new scope
is labeled as Scope 1.

You can add other scopes, including those of type host and file.

New target scope

3 Signals and Parameters

3-10

7 To create a scope to display on the host PC, right-click Host Scopes from the
xPC Scopes node.

A dialog appears. This dialog lists the operations you can perform on host
PC scopes. For example, within the current context, you can create a host PC
scope.

8 Select Add Host Scope.

A scope node appears under Host Scopes. In this example, the new scope is
labeled as Scope 2.

9 To visualize the host scope on the host PC, right-click Host Scopes from the
xPC Scopes node.

A dialog appears.

10 Select View Scopes.

The xPC Target Host Scope Viewer appears. By default, the viewer is
docked in the same window as the xPC Target Explorer window. Note that
the signals you add to the scope will appear at the top right of the viewer.

Signal Tracing

3-11

11 To list the properties of the scope object Scope 2, select the xPC Target
Explorer tab to return to that window and left-click Scope 2.

The scope properties are shown in the rightmost pane.

You next task is to add signals to the scopes. The following procedure assumes
that you have added scopes to the target PC and host PC.

Adding Signals to Scopes

1 In the xPC Target Explorer window, add signals to the target PC scope,
Scope 1. For example, to add signals Integrator1 and Signal Generator,
right-click each signal and select Add to Scopes. From the Add to Scopes
list, select Scope 1.

The Scope 1 node is shown with a plus sign.

3 Signals and Parameters

3-12

2 Expand the Scope 1 node.

The Scope 1 signals are displayed.

3 Start the scope. For example, to start Scope 1, right-click Scope 1 and select
Start.

The target screen plots the signals after collecting each data package.
During this time you can observe the behavior of the signals while the scope
is running.

Signal Tracing

3-13

4 Add signals to the host PC scope. For example, to add signals Integrator1
and Signal Generator, right-click each signal and select Add to Scopes.
From the Add to Scopes list, select Scope 2.

The Scope 2 node is shown with a plus sign.

5 Expand the Scope 2 node.

The Scope 2 signals are displayed.

3 Signals and Parameters

3-14

6 Start the scope. For example, to start the scope Scope 2, right-click Scope 2
in the Host Scopes node of the xPC Target Explorer and select Start.

The xPC Target Host Scope Viewer window plots the signals after
collecting each data package. During this time you can observe the behavior
of the signals while the scope is running.

You next task is to stop the scopes. The following procedure assumes that you
have started scopes.

Signal Tracing

3-15

Stopping Scopes

1 Stop the scopes. For example, to stop Scope 1, right-click Scope 1 and select
Stop.

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

Scope: 1, set to state 'interrupted'

2 Stop the target application. For example, to stop the target application
xpcosc, right-click xpcosc and select Stop.

The target application on the target PC stops running, and the target PC
displays the following messages:

System: execution stopped
minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

Note that if you stop the target application before stopping the scope, the
scope stops too.

Software Triggering Scopes
You can set up a scope such that only a user can trigger the scope. This section
assumes that you have added a scope to your target application (see “Creating
Scopes” on page 3-8) and that you have added signals to that scope (“Adding
Signals to Scopes” on page 3-11).

1 In the xPC Target Explorer window, select the scope that you want to trigger
by software. For example, select Scope 1.

The properties pane for that scope is displayed.

2 From the Trigger mode list, select Software.

3 Signals and Parameters

3-16

3 Start the scope and target application.

4 Right-click on the scope to be triggered. For example, select Scope 1.

5 Select Trigger.

Configuring the Host Scope Viewer
You can customize your host scope viewer. This section assumes that you have
added a host scope to your target application, started the host scope viewer,
and added signals Integrator1 and Signal Generator (see “Creating Scopes”

Signal Tracing

3-17

on page 3-8 and “Adding Signals to Scopes” on page 3-11). These viewer
settings are per scope.

• In the xPC Target Host Scope Viewer, right-click anywhere in the axis area
of the viewer.

A context menu is displayed. This context menu contains options for the
following:

- View Mode — Select Graphical for a graphical display of the data. Select
Numerical for a numeric representation of the data.

- Legends — Select and deselect this option to toggle the display of the
signals legend in the top right of the viewer.

- Grid — Select and deselect this option to toggle the display of grid lines in
the viewer.

- Y-Axis — Enter the desired values. In the Enter Y maximum limit and
Enter Y minimum limit text boxes, enter the range for the y-axis in the
Scope window.

- Export — Select the data to export. Select Export Variable Names to
export scope data names. In the Data Variable Name and Time Variable
Name text boxes, enter the names of the MATLAB variables to save data
from a trace. Click the OK button. The default name for the data variable
is application_name_scn_data, and the default name for the time variable
is application_name_scn_time where n is the scope number. Select
Export Scope Data to export scope data to MATLAB.

Signal Tracing with MATLAB
Creating a scope object allows you to select and view signals using the scope
methods. This section describes how to signal trace using xPC Target functions
instead of using the xPC Target graphical user interface.

After you create and download the target application, you can view output
signals.

Using the MATLAB interface, you can trace signals with

• Host or target scopes (see “Signal Tracing with MATLAB and Scopes of Type
Target” on page 3-18 for a description of signal tracing with target scopes)

3 Signals and Parameters

3-18

• Scopes of type file (see “Signal Tracing with MATLAB and Scopes of Type
File” on page 3-21)

Note, stop the scope before adding or removing signals from the scope.

Signal Tracing with MATLAB and Scopes of Type Target
This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It describes how
to trace signals with target scopes:

1 Start running your target application. Type either

+tg or tg.start or start(tg)

The target PC displays the following message.

System: execution started (sample time: 0.0000250)

2 To get a list of signals, type either:

set(tg, 'ShowSignals', 'on')

or

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for the
available signals. For example, the signals for the model xpcosc.mdl are as
follows.

Signal Tracing

3-19

ShowSignals = on
 Signals = INDEX VALUE BLOCK NAME

0 0.000000 Integrator1
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Signal Monitoring with MATLAB” on page 3-5.

3 Create a scope to display on the target PC. For example, to create a scope
with an identifier of 1 and a scope object name of sc1, type

sc1=tg.addscope('target', 1) or sc1=addscope(tg, 'target', 1)

4 List the properties of the scope object. For example, to list the properties of
the scope object sc1, type

sc1

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties StartTime, Time, and Data are not accessible with
a scope of type target.

xPC Scope Object

 Application = xpcosc
 ScopeId = 1
 Status = Interrupted
 Type = Target

NumSamples = 250
NumPrePostSamples = 0
Decimation = 1

 TriggerMode = FreeRun
 TriggerSignal = -1

TriggerLevel = 0.000000
TriggerSlope = Either
TriggerScope = 1
TriggerSample = -1

 Mode = Redraw (Graphical)

3 Signals and Parameters

3-20

 YLimit = Auto
 Grid = On

Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc1.addsignal ([0,1]) or addsignal(sc1,[0,1])

The target PC displays the following messages.

Scope: 1, signal 0 added
Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the
target screen until you start the scope.

6 Start the scope. For example, to start the scope sc1, type either

+sc1 or sc.start or start(sc1)

The target screen plots the signals after collecting each data package.
During this time you can observe the behavior of the signals while the scope
is running.

7 Stop the scope. Type either

sc1 or sc1.stop or stop(sc1)

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

Scope: 1, set to state 'interrupted'

8 Stop the target application. In the MATLAB window, type either

-tg or tg.stop or stop(tg)

The target application on the target PC stops running, and the target PC
displays the following messages.

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Signal Tracing

3-21

Signal Tracing with MATLAB and Scopes of Type File
This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It describes how
to trace signals with scopes of type file.

Note The signal data file can quickly increase in size. You should examine
the file size between runs to gauge the growth rate for the file. If the signal
data file grows beyond the available space on the disk, the signal data might
be corrupted.

1 Create an xPC Target application that works with scopes of type file. Type

tg=xpctarget.xpc

2 To get a list of signals, type either

set(tg, 'ShowSignals', 'on')

or

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for the
available signals. For example, the signals for the model xpcosc.mdl are
shown below.

ShowSignals = on
 Signals = INDEX VALUE BLOCK NAME

0 0.000000 Integrator1
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Signal Monitoring with MATLAB” on page 3-5.

3 Signals and Parameters

3-22

3 Start running your target application. Type

+tg or tg.start or start(tg)

The target PC displays the following message:

System: execution started (sample time: 0.0000250)

4 Create a scope to be displayed on the target PC. For example, to create a
scope with an identifier of 2 and a scope object name of sc2, type

sc2=tg.addscope('file', 2) or sc2=addscope(tg, 'file', 2)

5 List the properties of the scope object. For example, to list the properties of
the scope object sc2, type

sc2

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties StartTime, Time, and Data are not accessible with
a scope of type target.

xPC Scope Object

 Application = xpcosc
 ScopeId = 2
 Status = Interrupted
 Type = File
 NumSamples = 250
 NumPrePostSamples = 0
 Decimation = 1
 TriggerMode = FreeRun

TriggerScope = 2
TriggerSample = 0

 TriggerSignal = -1
 TriggerLevel = 0.000000
 TriggerSlope = Either

Signals = no Signals defined
 StartTime = -1.000000
 FileName = unset

Signal Tracing

3-23

 Mode = Lazy
 WriteSize = 512
 AutoRestart = off

Note that there is no name initially assigned to FileName. After you start the
scope, xPC Target assigns a name for the file to acquire the signal data. This
name typically consists of the scope object name, ScopeId, and the beginning
letters of the first signal added to the scope.

6 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc2.addsignal ([0,1]) or addsignal(sc2,[0,1])

The target PC displays the following messages.

Scope: 2, signal 0 added
Scope: 2, signal 1 added

After you add signals to a scope object, the scope of type file does not
acquire signals until you start the scope.

7 Start the scope. For example, to start the scope sc2, type

+sc2 or sc2.start or start(sc2)

The target PC displays the following message.

FileSys:File c:\sc2Integ.dat opened

The MATLAB window displays a list of the scope object properties. Notice
that FileName is assigned a default filename to contain the signal data for
the scope of type file. This name typically consists of the scope object name,
ScopeId, and the beginning letters of the first signal added to the scope.

Application = xpcosc
 ScopeId = 2
 Status = Pre-Acquiring
 Type = File
 NumSamples = 250
 NumPrePostSamples = 0
 Decimation = 1
 TriggerMode = FreeRun

3 Signals and Parameters

3-24

 TriggerScope = 2
 TriggerSample = 0
 TriggerSignal = 0
 TriggerLevel = 0.000000
 TriggerSlope = Either
 StartTime = NaN
 Signals = 0 : Integrator1
 1 : Signal Generator
 StartTime = NaN
 FileName = c:\sc2Integ.dat
 Mode = Lazy
 WriteSize = 512
 AutoRestart = off

8 Stop the scope. Type

-sc2 or sc2.stop or stop(sc2)

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

FileSys:File c:\sc2Integ.data closed
Scope: 2, set to state 'Interrupted'

9 Stop the target application. In the MATLAB window, type

-tg or tg.stop or stop(tg)

The target application on the target PC stops running, and the target PC
displays messages similar to the following.

System: execution stopped
minimal TET: 0.00006 at time 0.004250
maximal TET: 0.000037 at time 14.255250

To access the contents of the signal data file that the xPC Target scope of type
file creates, use the xPC Target file system object (xpctarget.fs) from the
host PC MATLAB window. To view or examine the signal data, you can use the
readxpcfile utility in conjunction with the plot function. For further details
on the xpctarget.fs file system object and the readxpcfile utility, see
Chapter 8, “Working with Target PC Files and File Systems.”

Signal Tracing

3-25

Signal Tracing with xPC Target Scope Blocks
Use scopes of type host to log signal data triggered by an event while your
target application is running. This topic describes how to use the three scope
block types.

Note xPC Target supports 10 scopes of each scope type for a maximum of 30
scopes.

Scope of Type Host
For a scope of type host, the scope acquires the first N samples into a buffer.
You can retrieve this buffer into the scope object property (sc.Data). The scope
then stops and waits for you to manually restart the scope.

The number of samples N to log after triggering an event is equal to the value
you entered in the Number of Samples parameter.

Select the type of event in the Block Parameters: Scope (xPC Target) dialog
box by setting Trigger Mode to Signal Triggering, Software Triggering, or
Scope Triggering.

Scope of Type Target
For a scope of type target, logged data (sc.Data, sc.Time, and sc.StartTime)
is not accessible over the command-line interface on the host PC. This is
because the scope object status (sc.Status) is never set to Finished. Once the
scope completes one data cycle (time to collect the number of samples), the
scope engine automatically restarts the scope. If you create a scope object (for
example, sc = getscopes(tg,1) for a scope of type target, and then try to get
the logged data by typing sc.Data, you will get an error message:

Scope # 1 is of type 'Target'! Property Data is not accessible.

If you want the same data for the same signals on the host PC while the data
is displayed on the target PC, you need to define a second scope object with type
host. Then you need to synchronize the acquisition of the two scope objects by
setting TriggerMode for the second scope to 'Scope'.

3 Signals and Parameters

3-26

Scope of Type File
For a scope of type file, the scope acquires data and writes it to the file named
in the FileName parameter in blocks of size WriteSize. The scope acquires the
first N samples into the memory buffer. This memory buffer is of length
Number of Samples. The memory buffer writes data to the file in WriteSize
chunks. The memory buffer writes data to the file at the end of the session.

If the AutoRestart check box is selected, the scope then starts over again,
overwriting the memory buffer. The additional data is appended to the end of
the existing file. If the AutoRestart box is not selected, the scope collects data
only up to the number of samples, and then stops. The number of samples N to
log after triggering an event is equal to the value you entered in the Number
of Samples parameter.

Select the type of event in the Block Parameters: Scope (xPC Target) dialog
box by setting Trigger Mode to Signal Triggering, Software Triggering, or
Scope Triggering.

Signal Tracing with a Web Browser
The Web browser interface allows you to visualize data using an interactive
graphical user interface.

After you connect a Web browser to the target PC you can use the scopes page
to add, remove, and control scopes on the target PC:

1 In the left frame, click the Scopes button.

The browser loads the Scopes List pane into the right frame.

2 Click the Add Scope button.

A scope of type target is created and displayed on the target PC. The
Scopes pane displays a list of all the scopes present. You can add a new
scope, remove existing scopes, and control all aspects of a scope from this
page.

To create a scope of type host, use the drop-down list next to the Add Scope
button to select Host. This item is set to Target by default.

Signal Tracing

3-27

3 Click the Edit button.

The scope editing pane opens. From this pane, you can edit the properties of
any scope, and control the scope.

4 Click the Add Signals button.

The browser displays an Add New Signals list.

5 Select the check boxes next to the signal names, and then click the Apply
button.

A Remove Existing Signals list is added above the Add New Signals list.

You do not have to stop a scope to make changes. If necessary, the Web
interface stops the scope automatically and then restarts it when the changes
are made. It does not restart the scope if the state was originally stopped.

When a host scope is stopped (Scope State is set to Interrupted) or finishes
one cycle of acquisition (Scope State is set to Finished), a button called Get
Data appears on the page. If you click this button, the scope data is retrieved
in comma separated variable (CSV) format. The signals in the scope are spread
across columns, and each row corresponds to one sample of acquisition. The
first column always corresponds to the time each sample was acquired.

Note If Scope State is set to Interrupted, the scope was stopped before it
could complete a full cycle of acquisition. Even in this case, the number of
rows in the CSV data will correspond to a full cycle. The last few rows (for
which data was not acquired) will be set to 0.

3 Signals and Parameters

3-28

Signal Logging
Signal logging is the process for acquiring signal data during a real-time run,
stopping the target application, and then transferring the data to the host PC
for analysis. You can plot and analyze the data, and later save it to a disk. xPC
Target signal logging samples at the base sample time. If you have a model
with multiple sample rates, add xPC Target scopes to the model to ensure that
signals are sampled at their appropriate sample rates.

Note xPC Target does not support logging data with decimation.

This section includes the following topics:

• “Signal Logging with xPC Target Explorer” on page 3-28 — Use an xPC
Target Scope block in your Simulink model to log signal data triggered by an
event.

• “Signal Logging with MATLAB” on page 3-30 — Use Outport blocks in your
Simulink model to log data to a target object in the MATLAB workspace.

• “Signal Logging with a Web Browser” on page 3-34 — Use Microsoft Internet
Explorer or Netscape Navigator to log data to a text file.

Signal Logging with xPC Target Explorer
You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

This procedure uses the model xpc_osc4.mdl as an example and assumes you
have created a target application and downloaded it to the target PC. See “xPC
Target Application” in Chapter 3 in the xPC Target Getting Started
documentation.

Note To use the xPC Target Explorer for signal logging, you need to add an
Outport block to your Simulink model, and you need to activate logging on the
Data Import/Export pane in the Configuration Parameters dialog.

Signal Logging

3-29

1 In xPC Target Explorer, select the down-loaded target application node. For
example, xpc_osc4.

The right pane displays the target application properties dialog for
xpc_osc4.

2 In the Logging pane, select the box of the signals you are interested in
logging. For example, select Output and TET.

3 Start the target application. For example, in the Target Hierarchy pane,
select the xpc_osc4 target application, then select Start.

4 Stop the target application. For example, in the Target Hierarchy pane,
select the xpc_osc4 target application, then select Stop.

3 Signals and Parameters

3-30

5 Send the selected logged data to the MATLAB workspace. In the target
application properties dialog for xpc_osc4, go to the Logging pane and press
the Send to MATLAB Workspace button.

In the MATLAB desktop, the Workspace pane displays the logged data.

You can examine or otherwise manipulate the data.

Signal Logging with MATLAB
You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

Time, states, and outputs — Logging the output signals is possible only if you
add Outport blocks to your Simulink model before the build process, and in the
Configuration Parameters Data Import/Export node, select the Save to
workspace check boxes. See “Entering Parameters for the Outport Blocks” in
Chapter 3 of the xPC Target Getting Started documentation.

Task execution time — Plotting the task execution time is possible only if you
select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options tab. This check box is selected by default. See
“Adding an xPC Target Scope Block” in Chapter 3 of the xPC Target Getting
Started documentation.

All scopes copy the last N samples from the log buffer to the target object logs
(tg.TimeLog, tg.OutputLog, tg.State, and Log, tg.TETLog). xPC Target
calculates the number of samples N for a signal as the value of Signal logging

Signal Logging

3-31

buffer size in doubles divided by the number of logged signals (1 time, 1 task
execution time (TET), Outputs, States).

After you run a target application, you can plot the state and output signals.
This procedure uses the Simulink model xpc_osc3.mdl as an example, and
assumes you have created and downloaded the target application for that
model.

1 In the MATLAB window, type

+tg or tg.start or start(tg)

The target application starts and runs until it reaches the final time set in
the target object property tg.StopTime.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc.mdl has just one Outport block, labeled 1, and there are two
states. This Outport block shows the signals leaving the blocks labeled
Integrator1 and Signal Generator.

2 Plot the signals from the Outport block and the states. In the MATLAB
window, type

plot(tg.TimeLog,tg.Outputlog)

Values for the logs are uploaded to the host PC from the target application
on the target PC. If you want to upload part of the logs, see the target object
method getlog on page 16-45.

The plots shown below are the result of a real-time execution. To compare
this plot with a plot for a non-real-time simulation, see “Simulating the
Model from MATLAB” in Chapter 3 of the xPC Target Getting Started
documentation.

3 Signals and Parameters

3-32

Signal Logging

3-33

3 In the MATLAB window, type

plot(tg.TimeLog,tg.TETLog)

Values for the task execution time (TET) log are uploaded to the host PC
from the target PC. If you want to upload part of the logs, see the target
object method getlog on page 16-45.

The plot shown below is the result of a real-time run.

The TET is the time to calculate the signal values for the model during each
sample interval. If you have subsystems that run only under certain
circumstances, plotting the TET would show when subsystems were
executed and the additional CPU time required for those executions.

3 Signals and Parameters

3-34

4 In the MATLAB window, type either

tg.AvgTET or get(tg,'AvgTET')

MATLAB displays the following information about the average task
execution time.

ans =

 5.7528e-006

The percentage of CPU performance is the average TET divided by the sample
time.

Signal Logging with a Web Browser
When you stop the model execution, another section of the Web browser
interface appears that enables you to download logging data. This data is in
comma-separated value (CSV) format. This format can be read by most
spreadsheet programs and also by MATLAB using the csvread function.

This section of the Web browser interfaces appears only if you have enabled
data logging, and buttons appear only for those logs (states, output, and TET)
that are enabled. If time logging is enabled, the first column of the CSV file is
the time at which data (states, output, and TET values) was acquired. If time
logging is not enabled, only the data is in the CSV file, without time
information.

You analyze and plot the outputs and states of your target application to
observe the behavior of your model, or to determine the behavior when you vary
the input signals.

Time, states, and outputs — Logging the output signals is possible only if you
add outport blocks to your Simulink model before the build process, and in the
Configuration Parameters Data Import/Export node, select the Save to
workspace check boxes. See “Entering Parameters for the Outport Blocks” in
Chapter 3 in the xPC Target Getting Started documentation.

Task execution time — Logging the task execution time is possible only if you
select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options node. This check box is selected by default.
See “Entering Parameters for an xPC Target Scope Block” in Chapter 3 in the
xPC Target Getting Started documentation.

Parameter Tuning

3-35

Parameter Tuning
xPC Target lets you change parameters in your target application while it is
running in real time. This section includes the following topics:

• “Parameter Tuning with xPC Target Explorer” on page 3-35 — Use the xPC
Target Explorer to change block parameters in your target application.

• “Parameter Tuning with MATLAB” on page 3-38 — Use the MATLAB
Command Window and target objects in your MATLAB workspace to change
target application parameters.

• “Parameter Tuning with Simulink External Mode” on page 3-40 — Connect
your Simulink model to your target application, and change target
application parameters by changing Simulink block parameters.

• “Parameter Tuning with a Web Browser” on page 3-42 — Connect your
target application to a Web browser with the target application running on
a target PC connected to a network.

Parameter Tuning with xPC Target Explorer
xPC Target lets you change parameters in your target application while it is
running in real time. With these functions you do not need to set Simulink to
external mode, and you do not need to connect Simulink with the target
application.

You can download parameters to the target application while it is running or
between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model.

After you download a target application to the target PC, you can change block
parameters using xPC Target Explorer. This procedure uses the Simulink
model xpcosc.mdl as an example, and assumes you have created and
downloaded the target application for that model.

1 In xPC Target Explorer, right-click the downloaded target application node.
For example, xpcosc.

2 Select Start.

3 Signals and Parameters

3-36

3 To get the list of parameters in the target application, expand the Model
Hierarchy node under the target application.

The Model Hierarchy expands to show the elements in the Simulink model.

Each signal in the signals section has a corresponding entry in the
parameters section. To change the value of a signal, you need to select the
corresponding parameter entry. Note that if a parameter is not tunable, it
does not appear in the parameter area.

4 Select the parameter of the signal you want to edit. For example, select
Signal Generator.

The right pane displays the Block Parameters dialog for Signal Generator.
There are two parameters, Amplitude and Frequency, for this block.

5 Change the frequency. For example, in the Signal Generator block
parameters dialog, select Frequency.

The current value of the Frequency parameter is displayed.

Parameters

Signals

Parameter Tuning

3-37

6 Double-click the box that contains the frequency value.

The box becomes editable.

7 Enter a new value for the frequency. For example, 200.

8 Press the Enter key.

The box is updated and the Update Parameter button becomes active.

The plot frame then updates the signals after running the simulation with
the new parameter value.

Updated Frequency value

3 Signals and Parameters

3-38

9 Stop the scope. For example, to stop Scope 1, right-click Scope 1 and select
Stop.

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message:

Scope: 1, set to state 'interrupted'

10 Stop the target application. For example, to stop the target application
xpcosc, right-click xpcosc and select Stop.

The target application on the target PC stops running, and the target PC
displays the following messages:

System: execution stopped
minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 8.557000

Parameter Tuning with MATLAB
You use the MATLAB functions to change block parameters. With these
functions you do not need to set Simulink to external mode, and you do not need
to connect Simulink with the target application.

You can download parameters to the target application while it is running or
between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model.

After you download a target application to the target PC, you can change block
parameters using xPC Target functions. This procedure uses the Simulink
model xpcosc.mdl as an example, and assumes you have created and
downloaded the target application for that model:

1 In the MATLAB window, type

+tg or tg.start or start(tg)

The target PC displays the following message.

System: execution started (sample time: 0.001000)

Parameter Tuning

3-39

2 Display a list of parameters. Type either

set(tg,'ShowParameters','on') or tg.ShowParameters='on'

and then type

tg

The MATLAB window displays a list of properties for the target object.

ShowParameters = on

Parameters =

3 Change the gain. For example, to change the Gain1 block, type either

tg.setparam(5,800) or setparam(tg,5,800)

As soon as you change parameters, the changed parameters in the target
object are downloaded to the target application. The target PC displays the
following message:

INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK NAME

0 0 DOUBLE Scalar Initial Condition Integrator1

1 4 DOUBLE Scalar Amplitude Signal
Generator

2 20 DOUBLE Scalar Frequency Signal
Generator

3 1000000 DOUBLE Scalar Gain Gain

4 0 DOUBLE Scalar Initial Condition Integrator

5 400 DOUBLE Scalar Gain Gain1

6 1000000 DOUBLE Scalar Gain Gain2

3 Signals and Parameters

3-40

ans =

parIndexVec: 5
OldValues: 100
NewValues: 800

The plot frame then updates the signals after running the simulation with
the new parameters.

4 Stop the target application. In the MATLAB window, type

-tg or tg.stop or stop(tg)

The target application on the target PC stops running, and the target PC
displays the following messages:

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Parameter Tuning with Simulink External Mode
You use Simulink external mode to connect your Simulink block diagram to
your target application. The block diagram becomes a graphical user interface
to your target application. You set up Simulink in external mode to establish a
communication channel between your Simulink block window and your target
application.

In Simulink external mode, wherever you change parameters in the Simulink
block diagram, Simulink downloads those parameters to the target application
while it is running. This feature lets you change parameters in your program
without rebuilding the Simulink model to create a new target application.

After you download your target application to the target PC, you can connect
your Simulink model to the target application. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created and
downloaded the target application for that model.

1 In the Simulink window, and from the Simulation menu, click External.

A check mark appears next to the menu item External, and Simulink
external mode is activated.

Parameter Tuning

3-41

2 In the Simulink block window, and from the Simulation menu, click
Connect to target.

All of the current Simulink model parameters are downloaded to your target
application. This downloading guarantees the consistency of the parameters
between the host model and the target application.

The target PC displays the following message, where # is the actual number
of tunable parameters in your model:

ExtM: Updating # parameters

3 From the Simulation menu, click Start Real-Time Code, or, in the
MATLAB window, type

+tg or tg.start or start(tg)

The target application begins running on the target PC, and the target PC
displays the following message:

System: execution started (sample time: 0.000250)

4 From the Simulation block diagram, double-click the block labeled Gain1.

The Block Parameters: Gain1 parameter dialog box opens.

3 Signals and Parameters

3-42

5 In the Gain text box, enter 800 and click OK.

As soon as you change a model parameter and click OK or the Apply button
on the Block Parameters: Gain1 dialog box, all the changed parameters in
the model are downloaded to the target application, as shown below.

6 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the target application. Now, if you
change a block parameter in the Simulink model, there is no effect on the
target application. Connecting and disconnecting Simulink works
regardless of whether the target application is running or not.

7 From the Simulation menu, click Stop real-time code, or, in the MATLAB
window, type either

stop(tg) or -tg

The target application on the target PC stops running, and the target PC
displays the following messages:

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Parameter Tuning with a Web Browser
The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC you can use the Parameters
page to change parameters in your target application while it is running in real
time:

Parameter Tuning

3-43

1 In the left frame, click the Parameters button.

The browser loads the Parameter List pane into the right frame.

If the parameter is a scalar parameter, the present parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, there is a button that takes you to
another page that displays the vector or matrix (in the correct shape) and
enables you to edit the parameter.

2 Enter a new parameter value into one or more of the parameter boxes, and
then click the Apply button.

The new parameter values are uploaded to the target application.

Saving and Reloading Application Parameters with
MATLAB
After you have a set of target application parameter values that you are
satisfied with, you can save those values to a file on the target PC. You can then
later reload these saved parameter values to the same target application. You
can save parameters from your target application while the target application
is running or between runs. This feature lets you save and restore parameters
in your target application without rebuilding the Simulink model. You save
and restore parameters with the target object methods saveparamset and
loadparamset.

The procedures assume that

• You have a target application object named tg.

• You have a target application downloaded on the target PC.

• You have parameters you would like to save for reuse. See

- “Parameter Tuning with MATLAB” on page 3-38

- “Parameter Tuning with Simulink External Mode” on page 3-40

- “Parameter Tuning with a Web Browser” on page 3-42

3 Signals and Parameters

3-44

Saving the Current Set of Target Application Parameters
To save a set parameters to a target application, use the saveparamset method.
The target application can be stopped or running:

1 Identify the set of parameter values you want to save.

2 Select a descriptive filename to contain these values. For example, use the
model name in the filename. You can only load parameter values to the same
target application from which you saved the parameter values.

3 In the MATLAB window, type either

tg.saveparamset('xpc_osc4_param1') or
saveparamset(tg,'xpc_osc4_param1')

xPC Target creates a file named xpcosc4_param1 in the current directory of
the target PC, for example, C:\xpcosc4_param1.

For a description of how to restore parameter values to a target application, see
“Loading Saved Parameters to a Target Application” on page 3-44. For a
description of how to list the parameters and values stored in the parameter
file, see “Listing the Values of the Parameters Stored in a File” on page 3-45.

Loading Saved Parameters to a Target Application
To load a set of saved parameters to a target application, use the loadparamset
method. You must load parameters to the same model from which you save the
parameter file. If you load a parameter file to a different model, the behavior is
undefined.

This section assumes that you have a parameters file saved from an earlier run
of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-44).

1 From the collection of parameter value files on the target PC, select the one
that contains the parameter values you want to load.

2 In the MATLAB window, type either

tg.loadparamset('xpc_osc4_param1') or
loadparamset(tg,'xpc_osc4_param1')

xPC Target loads the parameter values into the target application.

Parameter Tuning

3-45

For a description of how to list the parameters and values stored in the
parameter file, see “Listing the Values of the Parameters Stored in a File” on
page 3-45.

Listing the Values of the Parameters Stored in a File
To list the parameters and their values, load the file for a target application,
then turn on the ShowParameters target object property.

This section assumes that you have a parameters file saved from an earlier run
of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-44).

1 Ensure that the target application is stopped. For example, type

tg.stop

2 Load the parameter file. For example, type

tg.loadparamset('xpc_osc4_param1');

3 Display a list of parameters. For example, type

tg.ShowParameters='on';

and then type

tg

The MATLAB window displays a list of parameters and their values for the
target object.

3 Signals and Parameters

3-46

4

xPC Target Explorer

This chapter describes some configuration and use features of xPC Target Explorer.

Introduction (p. 4-2) Read about the operations you can perform through xPC
Target Explorer

Specifying Target PC Configurations
(p. 4-4)

Define xPC Target PC configurations

Preparing Target PCs for xPC Target
System Use (p. 4-8)

Configure target PCs with predefined configurations

Downloading and Running Target
Applications (p. 4-10)

Download and run a target application on target PC

Control with xPC Target Explorer
(p. 4-15)

Manipulate target application signals and parameters

Menu Bar and Toolbar Contents and
Shortcut Keys (p. 4-17)

Refer to this section for the menu bar and toolbar
contents

4 xPC Target Explorer

4-2

Introduction
The xPC Target Explorer is a graphical user interface for xPC Target. It
provides a single point of contact for almost all interactions. Through xPC
Target Explorer, you can perform basic operations, such as

• Configure the host PC for xPC Target

• Add and configure target PCs for xPC Target

• Create boot disks for particular target PCs

• Connect the target PCs for your xPC Target system to the host PC

• Download a prebuilt target application, DLM, to a target PC

• Start and stop the application that has been downloaded to the target

• Add scopes of type host, target, and file to the downloaded target application

• Add and remove signals to the xPC Target scopes

• Start and stop scopes

• Adjust parameter values for the signals while the target application is
running

The xPC Target Explorer GUI runs on your xPC Target system host machine.

This chapter describes some of the xPC Target Explorer features. For more
detailed information, see

• Chapter 2, “Installation and Configuration” and Chapter 3, “Basic Tutorial”
in the xPC Target Getting Started Guide documentation

• Chapter 3, “Signals and Parameters” of the current guide

Before You Start
xPC Target Explorer assumes the following:

• At least one of the supported C compilers is installed.

• You have existing prebuilt target applications (see “Simulink Model” in
Chapter 3 of the xPC Target Getting Started documentation for a description
of how to create a Simulink model, and generate a target application from
that Simulink model).

Introduction

4-3

You can interact with xPC Target Explorer through menus or a toolbar. You
can also right-click objects and select actions from the context menu for those
objects. The tutorials in this chapter describe procedures using mouse
operations.

4 xPC Target Explorer

4-4

Specifying Target PC Configurations
• “Configuring Environment Parameters for Target PCs” on page 4-4 —

Describes how to configure extra target PC environment variables

• “Creating a Target PC Boot Disk” on page 4-5 — Describes how to create a
boot disk for the target PC just configured

Configuring Environment Parameters for Target PCs
You can optionally configure the environment parameters for the target PC
node in your xPC Target system. This section assumes that

• You have already added target PC nodes to your system.

• You have already configured the communication parameters between the
host PC and the target PC.

Note In general, the default values of these parameters are sufficient for you
to use xPC Target.

1 In the xPC Target Explorer, expand a target PC node.

A Configuration node appears. Under this are nodes for Communication,
Settings, and Appearance. The parameters for the target PC node are
grouped in these categories.

2 Select Settings.

The Settings Component pane appears to the right.

3 In the Target RAM size (MB) field, enter

- Auto — The target application automatically determines the amount of
memory up to 64 MB.

- The amount of RAM, in MB, installed on the target PC.

This field defines the total amount of installed RAM in the target PC. The
RAM is used for the kernel, target application, data logging, and other
functions that use the heap.

Specifying Target PC Configurations

4-5

4 From the Maximum model size list, select either 1 MB, 4 MB, or 16 MB.
Choosing the maximum model size reserves the specified amount of memory
on the target PC for the target application. The remaining memory is used
by the kernel and by the heap for data logging.

5 From the CAN library list, select None, 200 ISA, 527 ISA, 1000 PCI, 1000
MB PCI, or PC104.

6 In the xPC Target Hierarchy, select Appearance.

The Appearance Component pane appears to the right.

7 From the Target scope list, select either Enabled or Disabled. The property
Target scope is set by default to Enabled. If you set Target scope to
Disabled, the target PC displays information as text. To use all the features
of the target scope, you also need to install a keyboard and mouse on the
target PC.

8 Set the Target scope property to Enabled.

9 Target mouse allows you to disable or enable mouse support on the target
PC. From the Target mouse list, select None, PS2, RS232 COM1, or RS232
COM2.

You are now ready to create an xPC Target boot disk for the target PCs. See
“Creating a Target PC Boot Disk” on page 4-5.

Creating a Target PC Boot Disk
When you are satisfied with the host PC and target PC configurations, you can
create an xPC Target boot disk. An xPC Target boot disk includes the xPC
Target kernel specific for either serial or network communication. Each unique
host PC/target PC configuration combination requires its own target boot disk.

You can create one of three types of boot disk per configuration combination:

• Boot floppy — Allows you to boot a target PC from a 3.5 inch disk. You can
then download a target application from the host PC to the target PC. This
is the most basic of the target boot disks. The following procedure describes
how to create Boot Floppy disk.

• DosLoader — Allows you to boot a target PC from a device other than a 3.5
inch disk, such as a hard disk or flash memory. You can then download a

4 xPC Target Explorer

4-6

target application from the host PC to the target PC. This mode requires you
to have your own copy of DOS on a 3.5 inch disk. See Chapter 5, “Embedded
Option,” of the xPC Target User’s documentation for a description of how to
create a DosLoader disk.

• StandAlone — Bundles the kernel and target application into one entity that
you can copy onto a 3.5 inch disk or alternate device. This allows the target
PC to run as a stand-alone PC with the target application already loaded. See
Chapter 5, “Embedded Option” for a description of how to create a
StandAlone disk.

The following are notes on default target PCs:

• For all modes, the target PC last selected through xPC Target Explorer is the
default target PC. This means that if you build a target application from a
Simulink model, xPC Target builds and downloads that application for the
target PC last selected. Note that a target PC is considered selected if you
select any of its node components, such as Settings. If you delete the target
PC node from xPC Target Explorer, it is still the default target PC if it is the
last one selected.

• If you do not start xPC Target Explorer, or if you close and restart xPC
Target Explorer, but do not select a target PC, the xpcsetup environment
defines the default target PC. This means that if you build a target
application from a Simulink model, xPC Target builds that application for
the last target PC configured with xpcsetup.

Note The DosLoader and StandAlone options require you to purchase the
xPC Target Embedded Option. Contact your MathWorks representative for
further information.

1 In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node. For example, select the Configuration node for
Target PC1.

A target boot configuration pane appears in the right-most pane.

2 From the Target boot mode list, select a boot disk mode. For example, select
Boot Floppy.

Specifying Target PC Configurations

4-7

3 Click the Create BootDisk button.

A pop-up dialog appears, requiring you to insert a formatted disk.

4 Insert a formatted 3.5 inch disk.

xPC Target writes the xPC Target kernel and other required files to the 3.5
inch disk.

5 When the 3.5 inch disk drive stops, remove the 3.5 inch disk.

Your next task is to install the software on the target PC and boot and test your
installation. See “Installing Software, Booting a Target PC, and Testing the
Target PC” on page 4-8.

4 xPC Target Explorer

4-8

Preparing Target PCs for xPC Target System Use
• “Installing Software, Booting a Target PC, and Testing the Target PC” on

page 4-8 — Describes how to install software on the target PC with the target
PC boot disk and boot the target PC

Installing Software, Booting a Target PC, and
Testing the Target PC
This topic describes how to install software on a target PC, boot that PC, and
test the installation and connection between the host PC and the target PC.
This section assumes that you have a boot disk, created as described in
“Creating a Target PC Boot Disk” on page 4-5.

1 Insert the new target boot disk into the corresponding target PC disk drive.

2 Press the reset button on the target PC.

The target PC begins to boot up.

3 After loading the BIOS, xPC Target boots the kernel and displays the
following screen on the target PC.

4 In the xPC Target Explorer xPC Target Hierarchy pane, right-click a
target, for example Target PC1.

The context menu dialog appears. This dialog lists the operations you can
perform on the target PC.

5 Select Connect.

The Target Status pane should indicate that you are connected to the target
PC.

Preparing Target PCs for xPC Target System Use

4-9

6 If you want to check the connection between the host PC and target PC, in
the xPC Target Explorer, from the Tools menu, select Ping Target.

Upon success, a popup dialog box appears. Click OK to close the box.

If the connection is established, you are ready to download a target application
to the target PC. See “Downloading Target Applications to a Target PC” on
page 4-11.

If the result of the target ping indicates that there is no communication
between the host PC and target PC, refer to “Installation, Configuration, and
Test Troubleshooting” in Chapter 13, “Troubleshooting,” of the xPC Target
User’s documentation.

4 xPC Target Explorer

4-10

Downloading and Running Target Applications
• “Changing the Prebuilt Target Application (DLM) Directory” on page 4-10 —

Describes how to change the directory.

• “Downloading Target Applications to a Target PC” on page 4-11 — Describes
how to download target applications to the target PC

• “Running the Target Application” on page 4-13 — Describes how to run the
downloaded target application

Changing the Prebuilt Target Application (DLM)
Directory
This topic assumes that you have prebuilt target applications (DLMs) on a local
disk in your host PC. It describes how to change directory to one that contains
the prebuilt target applications (DLMs) you want to download to your target
PCs.

1 In the xPC Target Explorer, left-click the File menu.

2 Select Change current directory.

A browser is displayed.

3 Browse to the directory that contains the prebuilt target applications you
want.

4 Press OK.

A list of the prebuilt target applications appears, as shown.

Downloading and Running Target Applications

4-11

You are now ready to select and download a target application to a target PC
(see “Downloading Target Applications to a Target PC” on page 4-11.

Downloading Target Applications to a Target PC
This topic describes how to download a target application to a target PC. It
assumes the following:

• In your current working directory, you have a prebuilt target application
that you want to download to a target PC.

• You have installed xPC Target software and booted the target PC to which
you want to download a target application.

• You have a physical connection between the xPC Target Explorer host
machine and the target PC to which you want to download a target
application.

1 In xPC Target Explorer, check that the DLM(s) node in the xPC Target
Hierarchy has the pathname of the directory that contains the prebuilt
target application you want to download to the target PC.

4 xPC Target Explorer

4-12

2 Right-click a target PC that you booted with xPC Target software, for
example, Target PC1.

3 Select Connect.

The target PC icon changes and the red X is removed .

4 Left-click and drag the desired target application to the target PC to which
you want to download the target application.

xPC Target Explorer downloads the target application to the target PC. A
node for the target application appears in the xPC Target Hierarchy under
the target PC node.

Target Application
Directory (DLMs)

Downloading and Running Target Applications

4-13

Note If you want to rebuild or revisit the model, click the Go to Simulink
Model button. The Simulink model for the target application appears.

Your next task is to run the target application on the target PC. See “Running
the Target Application” on page 4-13.

Running the Target Application
This topic describes how to run a target application on a target PC. It assumes
that you have already downloaded the target application to the target PC. If
you have not yet done so, see “Downloading Target Applications to a Target
PC” on page 4-11.

1 In xPC Target Explorer, right-click the downloaded target application node.
For example, xpcosc.

The context menu dialog appears. This dialog lists the operations you can
perform on the target application.

4 xPC Target Explorer

4-14

2 Select Start.

xPC Target Explorer starts running the loaded target application.

3 Stop the target application (described here) or let the target application run
to the end. To stop the target application, right-click the target application
node (for example, xpcosc) and select Stop from the list.

Now that you have successfully downloaded and run a target application, you
are ready to learn about how to perform signal tracing and logging. See
“Control with xPC Target Explorer” on page 4-15.

Control with xPC Target Explorer

4-15

Control with xPC Target Explorer
Signal monitoring is the process for acquiring signal data during a real-time
run without time information. The advantage with signal monitoring is that
there is no additional load on the real-time tasks. Use signal monitoring to
acquire signal data without creating scopes that run on the target PC.

After you start running a target application, you can use signal monitoring to
get signal data. This procedure uses the model xpcosc.mdl as an example, and
assumes you created and downloaded the target application to the target PC.
For meaningful values, the target application should be running.

This section describes the target application properties panel

Manipulating Target Application Properties

1 In xPC Target Explorer, select the node of the loaded target application in
which you are interested. For example, xpcosc.

The right pane changes to the target application properties pane for the
application.

2 In this pane, you can change the following application properties

- Stop time
- Sample time
- View mode
- Log mode

3 Change the Stop time parameter to 9999.

4 xPC Target Explorer

4-16

Menu Bar and Toolbar Contents and Shortcut Keys

4-17

Menu Bar and Toolbar Contents and Shortcut Keys
The procedures in this chapter use right-click operations. You can also perform
xPC Target Explorer operations through the menu bar and toolbar. This
section is a reference of the menu bar and toolbar contents.

The xPC Target Explorer menu bar has the following menus:

• File — General file operation options, including

- Add Target — Adds a target PC to the xPC Target system
- Remove Target — Removes a Target PC from the xPC Target system

- Change current directory — Changes the current directory. Change
directory to one that contains the prebuilt target application (DLM) you
want to download to your target PCs.

- Close — Close xPC Target Explorer

• Target — General target PC operations, including

- Start Application — Starts the selected target application

- Stop Application — Stops the selected target application

- Add a scope — Adds a scope of type Host, Target, or File

- Delete scope — Deletes a scope

- View host scopes — Displays a viewer on the host PC for scopes of type
host

• Tools — General operations, including

- Enable/Disable Refresh — Enables/disables the window refresh. You
should the refresh enabled to allow the xPC Target Explorer to update its
display when necessary.

- Ping Target — Tests the communication between the host PC and target
PCs.

- Go to Simulink Model — For the selected model, displays the Simulink
model.

• Help — General product help information, including

- Using xPC Target — Invokes help for xPC Target product

- xPC Target Explorer Help — Invokes help for xPC Target Explorer

- About xPC Target — Invokes general xPC Target information

4 xPC Target Explorer

4-18

The xPC Target Explorer toolbar has buttons for some of the more commonly
used operations available from the menu bar. These buttons include

• Add target button

• Delete target button

• Connect to target

• Start application button

• Stop application button

• Scope viewer button

• Go to Simulink model button

The xPC Target Explorer has the following keyboard shortcuts

• Add target — Ctrl+A

• Remove target — Ctrl+R

• Close — Ctrl+W

• Stop/start target — Ctrl+T

• Ping target — Ctrl+P

• Delete scope — Select scope and press Delete

5

Embedded Option

The xPC Target Embedded Option allows you to boot the target PC from a device other than a
3.5 inch disk drive, such as a hard disk or flash memory. It also allows you to deploy stand-alone
applications on the target PC independent of the host PC. This chapter includes the following
sections:

Introduction (p. 5-2) Learn about the different types of embedded target
applications you can create using the xPC Target
Embedded Option

xPC Target Embedded Option Modes
(p. 5-3)

Learn about the xPC Target Embedded Option modes

Embedded Option Setup (p. 5-9) Configure xPC Target to generate embedded target
applications and create a DOS system boot disk

DOSLoader Target Setup (p. 5-12) Create a target application that boots from a device other
than a 3.5 inch disk drive

Stand-Alone Target Setup (p. 5-17) Create a target application that runs on the target PC
disconnected from the host PC, and optionally, boots from
a device other than a 3.5 inch disk drive

5 Embedded Option

5-2

Introduction
The xPC Target Embedded Option allows you to boot the xPC Target kernel
from a 3.5 inch disk drive and other devices, including a flash disk or a hard
disk drive. By using the xPC Target Embedded Option, you can configure a
target PC to automatically start execution of your embedded application for
continuous operation each time the system is booted. You can use this
capability to deploy your own real-time applications on target PC hardware.

The xPC Target Embedded Option has two modes, DOSLoader and
StandAlone, that create two different types of embedded target applications:

• DOSLoader mode allows you to boot a target PC from a device other than a
3.5 inch disk, such as a hard disk or flash memory. You can then download a
target application from the host PC to the target PC.

• StandAlone mode bundles the kernel and target application into one entity
that you can copy onto a 3.5 inch disk or alternate device. This allows the
target PC to run as a stand-alone PC with the target application already
loaded.

Additionally, the xPC Target Embedded Option allows you to deploy
stand-alone GUI applications running on the host PC to control, change
parameters, and acquire signal data from a target application.

Without the xPC Target Embedded Option, you can create, but not deploy,
stand-alone GUI applications running on the host PC to control, change
parameters, and acquire signal data from a target application. This feature
uses the xPC Target API with any programming environment, or the xPC
Target COM API with any programming environment, such as Visual Basic,
that can use COM objects. See the xPC Target API User’s and Reference
documentation for further information about this feature.

xPC Target Embedded Option Modes

5-3

xPC Target Embedded Option Modes
The xPC Target Embedded Option extends the xPC Target base product with
the two modes:

• DOSLoader — Use this mode of operation to start the kernel on the target
PC from a 3.5 inch disk, flash disk, or a hard disk. After the target PC boots
with the kernel, it waits for the host computer to download a real-time
application. You can control the target application from either the host PC or
the target PC. See “DOSLoader Mode Overview” on page 5-4 for further
details.

• StandAlone — Use this mode to load the target PC with both the xPC Target
kernel and a target application. Like DOSLoader mode, this mode of
operation can start the kernel on the target PC from 3.5 inch disk, flash disk,
or hard disk. After starting the kernel on the target PC, StandAlone mode
can also automatically start the target application that you loaded with the
kernel. Thus, this configuration provides complete stand-alone operation.
StandAlone mode eliminates the need for a host PC and allows you to deploy
real-time applications on target PCs. See “StandAlone Mode Overview” on
page 5-5 for further details.

Regardless of the mode, you initially boot your target PC with DOS from any
boot device, then the xPC Target kernel is started from DOS. xPC Target only
needs DOS to boot the target PC and start the xPC Target kernel. DOS is no
longer available on the target PC unless you reboot the target PC without
starting the xPC Target kernel.

Note The xPC Target Embedded Option requires a boot device with DOS
installed. It otherwise does not have any specific requirements as to the type
of boot device. You can boot xPC Target from any device that has DOS
installed. DOS software and license are not included with xPC Target or with
the xPC Target Embedded Option.

Without the xPC Target Embedded Option, you can only download real-time
applications to the target PC after booting the target PC from an xPC Target
boot disk. You must use a target PC equipped with a 3.5 inch disk drive.

5 Embedded Option

5-4

The following are some instances where you might want to use the xPC Target
Embedded Option. You might have one of these situations if you deploy the
target PC in a small or rugged environment:

• Target PC does not have a 3.5 inch disk drive.

• Target PC 3.5 inch disk drive must be removed after setting up the target
system.

This section includes the following topics:

• “DOSLoader Mode Overview” on page 5-4

• “StandAlone Mode Overview” on page 5-5

• “Restrictions” on page 5-7

DOSLoader Mode Overview
The primary purpose of DOSLoader mode is to allow you to boot from devices
other than a 3.5 inch disk drive. The following summarizes the sequence of
events for DOSLoader mode. For a detailed step-by-step procedure, see
“DOSLoader Target Setup” on page 5-12.

1 Format a 3.5 inch disk.

2 Copy a version of DOS onto this disk and insert this DOS disk into the host
PC 3.5 inch disk drive.

3 From the host PC MATLAB Command Window, type xpcexplr.

4 In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

5 From the Target boot mode list, select DOSLoader.

6 Create a boot disk. The boot disk will contain the following files:

- DOS files — Provide your own copy of DOS to boot the target PC. For
example, you can acquire DOS from FreeDOS.

- autoexec.bat — xPC Target version of this file that calls the xpcboot.com
executable to boot the xPC Target kernel.

- checksum.dat — xPC Target version of this file that optimizes boot disk
creation.

xPC Target Embedded Option Modes

5-5

- *.rtb — This file contains the xPC Target kernel. It also contains, as
applicable, specifications such as serial or TCP/IP communications and the
IP address of the target PC.

- xpcboot.com — Contains the xPC Target boot executable. This file
executes an xPC Target application and executes the *.rtb file.

7 Move the boot disk to the target PC.

8 Set up the target PC boot device such as a 3.5 inch disk, flash disk, or a hard
disk drive. As necessary, transfer the contents of the boot disk to the target
PC boot device.

9 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls the
xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb). The
target PC then awaits commands from the host PC.

10 To execute a target application, build and download one from the host PC to
the target PC. DOSLoader mode does not automatically load a target
application to the target PC. The xPC Target application executes entirely
in protected mode using the 32-bit flat memory model.

Note This mode requires that the host PC and target PC communicate either
via an RS-232 serial connection or a TCP/IP network connection.

StandAlone Mode Overview
The primary purpose of the StandAlone mode is to allow you to use a target PC
as a stand-alone system. The StandAlone mode enables you to deploy control
systems, DSP applications, and other systems on PC hardware for use in
production applications using PC hardware. Typically these production
applications are found in systems where production quantities are low to
moderate.

The following summarizes the sequence of events for StandAlone mode. For a
detailed step-by-step procedure, see “Stand-Alone Target Setup” on page 5-17.

5 Embedded Option

5-6

1 Format a 3.5 inch disk.

2 Copy a version of DOS onto this disk and insert this DOS disk into the host
PC 3.5 inch disk drive.

3 From the host PC MATLAB window, type xpcexplr.

4 In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

5 From the Target boot mode list, select StandAlone.

6 Select and build a model.

This step creates a directory in the current working directory named
modelname_xpc_emb.

7 Copy the contents of model_name_emb to the DOS disk. The disk should now
contain the following files:

- DOS files — Provide your own copy of DOS to boot the target PC. For
example, you can acquire DOS from FreeDOS.

- *.rtb — This file contains the xPC Target kernel. It also contains, as
applicable, specifications such as serial or TCP/IP communications and the
IP address of the target PC.

- xpcboot.com — Contains the xPC Target boot executable. This file
executes an xPC Target application and executes the *.rtb file.

- autoexec.bat — xPC Target version of this file that calls the xpcboot.com
executable to boot the xPC Target kernel.

8 Move the boot disk to the target PC.

9 Set up the target PC boot device such as a 3.5 inch disk, flash disk, or a hard
disk drive. Transfer the contents of the boot disk to the target PC boot
device.

10 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls the
xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb) and
associated target application. If you set up the boot device to run the xPC

xPC Target Embedded Option Modes

5-7

Target autoexec.bat file upon start-up, target application starts executing
as soon as possible. The xPC Target application executes entirely in
protected mode using the 32-bit flat memory model.

Note This mode does not require any connection between the host PC and
target PC.

With StandAlone mode, the target PC does not communicate with the host PC.
If you want to track signals on the target PC monitor, your target PC hardware
configuration needs to include a monitor. To trace signals, you must add xPC
Target scopes to the application before you build and transfer it to the target
PC. You also need to have a target PC with a monitor. See “Adding Target
Scope Blocks to Stand-Alone Applications” on page 5-18.

If you do not want to view signals on the target PC, you do not need a monitor
for the target PC, nor do you need add to target scopes to the application. In
this instance, your xPC Target system operates as a black box without a
monitor, keyboard, or mouse. Stand-alone applications are automatically set to
continue running for an infinite time duration or until the target computer is
turned off.

Restrictions
The following restrictions apply to the booted DOS environment when you use
xpcboot.com to execute the target applications:

• The CPU must execute in real mode.

• While loaded in memory, the DOS partition must not overlap the address
range of a target application.

To satisfy these restrictions,

• Do not use additional memory managers like emm386 or qemm.

• Avoid any utilities that attempt to load in high memory (for example,
himem.sys). If the target PC DOS environment does not use a config.sys
file or memory manager entries in the autoexec.bat file, there should be no
problems when running xpcboot.com.

5 Embedded Option

5-8

• Ensure that the xpcexplr TargetMouse option setting is consistent with
your hardware. Some PC hardware might use an RS-232 port for the mouse,
while others use a PS2 mouse. If a mouse is not required in your application,
select None as your setting for the TargetMouse. Choosing this setting helps
prevent problems.

Embedded Option Setup

5-9

Embedded Option Setup
This section includes the following topics:

• “Updating the xPC Target Environment” on page 5-9

• “Creating a DOS System Disk” on page 5-11

Updating the xPC Target Environment
After the xPC Target Embedded Option software has been correctly installed,
the xPC Target environment, visible through xpcexplr or getxpcenv, contains
two additional property choices for DOSLoader or StandAlone, in addition to the
default BootDisk that you normally use with xPC Target.

It is assumed that the xPC Target environment is already set up and working
properly with the xPC Target Embedded Option enabled. If you have not
already done so, confirm this now.

You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Explorer window.
Start MATLAB and execute the function

xpcexplr

In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node. You see the property Target boot mode, as well as the
currently selected value. The choices are

• BootFloppy — Standard mode of operation when xPC Target Embedded
Option is not installed.

• DOSLoader — For invoking the kernel on the target PC from DOS.

• StandAlone — For invoking the kernel on the target PC from DOS and
automatically starting the target application without connecting to a host
computer. With this mode, the kernel and the target application are
combined as a single module that is placed on the boot device.

5 Embedded Option

5-10

The default setting for the option TargetBoot is BootFloppy. When using
BootFloppy, xPC Target must first create a target boot disk, which is then used
to boot the target PC.

The option TargetBoot can be set to two other values, namely DOSLoader or
StandAlone. If the xPC Target loader is booted from any boot device with DOS
installed, the value DOSLoader must be set as shown above. If you want to use
a stand-alone application that automatically starts execution of your target
application immediately after booting, specify StandAlone.

The xPC Target environment is updated when you change the value. If your
choice is DOSLoader, you must create a new target boot disk by clicking the
Create BootDisk button. Note that this overwrites the data on the inserted
target boot disk as new software modules are placed on the target boot disk. If
your choice is StandAlone, your environment is updated, but you do not create
a new target boot disk. Upon building your next real-time application, all
necessary xPC Target files are saved to a subdirectory below your current
working directory. This subdirectory is named with your model name with the
string '_xpc_emb' appended, such as xpcosc_xpc_emb.

For more detailed information about how to use the xPC Target Explorer
window, see Chapter 4, “xPC Target Explorer.”

Embedded Option Setup

5-11

Creating a DOS System Disk
When using DOSLoader mode or StandAlone mode, you must first boot your
target PC with DOS. These modes can be used from any boot device including
flash disk, 3.5 inch disk drive, or a hard disk drive.

In order to boot DOS with a target boot disk, a minimal DOS system is required
on the boot disk. With DOS, you can create a DOS boot disk using the command

sys A:

Note xPC Target Embedded Option does not include a DOS license. You
must obtain a valid DOS license for your target PC.

It is helpful to copy additional DOS utilities to the boot disk, including

• A DOS editor to edit files

• The format program to format a hard disk or flash memory

• The fdisk program to create partitions

• The sys program to transfer a DOS system onto another drive, such as the
hard disk drive

A config.sys file is not necessary. The autoexec.bat file should be created to
boot the loader or a stand-alone xPC Target application automatically. This is
described in the following sections.

5 Embedded Option

5-12

DOSLoader Target Setup
DOSLoader mode allows you to copy the xPC Target kernel to the target flash
disk, remove the 3.5 inch disk drive, and then boot the xPC Target kernel.
Alternatively, you can also boot the xPC Target kernel from the target PC
3.5 inch disk drive. The target application is still downloaded from the host PC.
Use this mode for applications where an xPC Target host is not easily
accessible.

This section includes the following topics:

• “Updating Environment Properties and Creating a Boot Disk” on page 5-12
— Select DOSLoader mode in the xPC Target Explorer window.

• “Copying the Kernel to Flash Memory” on page 5-14 — Copy the xPC Target
kernel to the flash disk on the target PC and then start the kernel running.

• “Creating a Target Application for DOSLoader Mode” on page 5-16 —
Create, download, and run a target application from a host PC.

Updating Environment Properties and Creating a
Boot Disk
xPC Target uses the environment properties to determine what files to create
for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC. It would be helpful to
successfully create a target application with the TargetBoot option in the xPC
Target Explorer window set to BootFloppy before trying to create a kernel
that boots from DOS:

1 On the host computer, start MATLAB.

2 In the MATLAB Command Window, type

xpcexplr

The xPC Target Explorer window opens.

3 In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

4 From the Target boot mode list, select DOSLoader.

DOSLoader Target Setup

5-13

5 Click Create BootDisk.

A message box opens with the following message.

Insert a formatted floppy disk into your host PC disk drive and
click OK to continue.

6 Insert a 3.5 inch disk, and then click OK.

The files checksum.dat, xpcsgo1.rtb, xpcboot.com, and autoexec.bat are
copied to the disk.

With DOSLoader mode, the correct *.rtb file is added to the DOS disk
according to the options specified in the following table.

The numeric value of n corresponds to the maximum model size. This value
is either 1, 4, or 16 megabytes. The default value for n is 1, or a 1-megabyte
maximum model size.

Note that the autoexec.bat file should contain at least the following line:

xpcboot xxx.rtb

where xxx.rtb is the file described in the table above. View this
autoexec.bat file to confirm this.

7 If you want to boot the target PC from the 3.5 inch disk,

a Remove the 3.5 inch disk from the host PC.

b Put that disk into the target PC disk drive.

c Reboot the target PC. The DOS is booted from the target boot disk and
the autoexec.bat files, resulting in the automatic execution of the xPC

xPC Target
Environment

HostTargetComm:
RS-232

HostTargetComm:
TCP/IP

TargetScope:
Disabled

xpcston.rtb xpctton.rtb

TargetScope: Enabled xpcsgon.rtb xpctgon.rtb

5 Embedded Option

5-14

Target loader. From this point onwards, the CPU runs in protected mode
and DOS is discarded.

Otherwise, if you want to boot the target PC from flash memory instead of
the 3.5 inch disk, see “Copying the Kernel to Flash Memory” on page 5-14 for
a description of how to copy the kernel to flash memory. The same procedure
works with flash disks and other boot devices.

Note You can repeat this procedure as necessary. There are no restrictions on
the number of xPC Target boot floppies that you can create. However, xPC
Target and the xPC Target Embedded Option do not include DOS licenses. You
must purchase valid DOS licenses for your target PCs from the supplier of
your choice.

Copying the Kernel to Flash Memory
One method for transferring the kernel files from a host PC to a target PC is to
use an external 3.5 inch disk drive.

After you create boot disk with the kernel files on a host PC, you can copy the
kernel files from the 3.5 inch boot disk to the flash disk. See “Updating
Environment Properties and Creating a Boot Disk” on page 5-12.

1 If there is a 3.5 inch disk in the external disk drive, remove it. On the target
PC, press the Reset button.

2 Halt the boot process and bring up the DOS prompt. For example, if you see
the message for selecting the operating system to start, select Microsoft
Windows.

The boot process is stopped and a DOS prompt is displayed.

3 Insert the boot 3.5 inch disk with the xPC Target kernel into the target PC
external 3.5 inch disk drive.

4 Type

copy A:\xpcsgo1.rtb C:\work
copy A:\xpcboot.com C:\work
copy A:\autoexec.bat C:\work

DOSLoader Target Setup

5-15

5 If you want the kernel to run when you press the Reset button on your target
PC, save a copy of the file C:\autoexec.bat to a backup file, such as
C:\autoexec_back.wrk.

6 Edit the file C:\autoexec.bat to include the following lines. Adding these
commands to C:\autoexec.bat directs the system to execute the
autoexec.bat file located in C:\work.

cd C:\work
autoexec

Note Do not confuse C:\work\autoexec.bat with C:\autoexec.bat. The file
C:\work\autoexec.bat includes the command xpcboot.com to start the xPC
Target kernel. The file C:\autoexec.bat includes the files you want the
system to execute when the system starts up.

7 Edit the file C:\autoexec.bat to include the lines

cd C:\work
autoexec

8 Remove the 3.5 inch disk, and then, on the target PC, press the Reset
button.

The sequence of calls during the boot process is

a C:\autoexec.bat

b C:\work\autoexec.bat

c C:\work\xpcboot.com

d C:\work\xpcsgo1.rtb

5 Embedded Option

5-16

Creating a Target Application for DOSLoader Mode
For DOSLoader mode, a target application is created on a host PC and
downloaded to your target PC.

After you set the Simulink and Real-Time Workshop® parameters for code
generation with xPC Target in your Simulink model, you can use xPC Target
with DOSLoader mode to create a target application:

1 In the MATLAB window, type the name of a Simulink model. For example,
type

xpc_osc3

A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click Build
Model.

3 Real-Time Workshop and xPC Target create a target application and
download it to your target PC.

Stand-Alone Target Setup

5-17

Stand-Alone Target Setup
StandAlone mode combines the target application with the kernel and boots
them together on the target PC from flash memory (or alternatively, the target
PC 3.5 inch disk drive). The host PC does not need to be connected to the target
PC. This section includes the following topics:

• “Updating Environment Properties” on page 5-17 — Select StandAlone mode
in the xPC Target Explorer window.

• “Adding Target Scope Blocks to Stand-Alone Applications” on page 5-18 —
Add target scope blocks to models to monitor signal data.

• “Creating a Kernel/Target Application” on page 5-21 — On the host PC,
create a stand-alone application.

• “Copying the Kernel/Target Application to Flash Disk” on page 5-22 — Copy
the combined xPC Target kernel and target application to the flash disk on
the target PC.

Updating Environment Properties
xPC Target uses the environment properties to determine what files to create
for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC. It would be helpful to
successfully create a target application with the TargetBoot option in the xPC
Target Explorer window set to BootFloppy before trying to create a
stand-alone application:

1 On the host computer, start MATLAB.

2 In the MATLAB window, type

xpcexplr

The xPC Target Explorer window opens.

3 In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

4 From the Target boot mode list, select DOSLoader.

5 Embedded Option

5-18

5 From the Target boot mode list, choose StandAlone.

xPC Target updates the environment properties, and the build process is
ready to create a stand-alone kernel/target application.

For StandAlone mode, you do not create an xPC Target boot disk. Instead, you
copy files created from the build process onto a formatted 3.5 inch disk.

Adding Target Scope Blocks to Stand-Alone
Applications
When using xPC Target Embedded Option with StandAlone mode, you can
optionally use scopes of type target or file to trace signals and display them on
the target screen. Because host-to-target communication is not supported with
StandAlone mode, scope objects of type target or file must be defined within the
Simulink model before the xPC Target application is built. xPC Target offers
the Scope (xPC) block for such purposes.

To add a Scope (xPC) block to a Simulink model,

1 Copy the Scope (xPC) block into your block diagram and connect the signals
you would like to view to this block. You can use multiple signals as long as
you use a Mux block to bundle them.

Stand-Alone Target Setup

5-19

2 Edit the Scope (xPC) dialog box and confirm that the check box entry for
Start scope when application starts is selected, as shown in the following
dialog box.

5 Embedded Option

5-20

This setting is required to enable target scopes to begin operating as soon as
the application starts running. This setting is important because the host
PC is not available in StandAlone mode to issue a command to start scopes.

3 Ensure that the Scope type field is Target or File.

4 Save the model.

Your next task is to create a kernel/target application. See “Creating a
Kernel/Target Application” on page 5-21.

Stand-Alone Target Setup

5-21

Creating a Kernel/Target Application
Use xPC Target with StandAlone mode to create a combined kernel and target
application with utility files. A combined kernel and target application allows
you to disconnect your target PC from a host PC and run stand-alone
applications.

After you set the Simulink and Real-Time Workshop parameters for code
generation with xPC Target in your Simulink model, you can use xPC Target
with StandAlone mode to create a target application:

1 In the MATLAB window, type the name of a Simulink model. For example,
type

xpc_osc3

A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click Build
Model.

Real-Time Workshop and xPC Target create a directory xpc_osc3_xpc_emb
with the following files:

- autoexec.bat — This file is automatically invoked by DOS. It then runs
xpcboot.com and the *.rtb file.

- xpc_osc3.rtb — This image contains the xPC Target kernel and your
target application.

- xpcboot.com — This file is a static file that is part of xPC Target
Embedded Option.

3 Copy the preceding files to a formatted 3.5 inch disk.

4 If you want to boot the target PC from the 3.5 inch disk,

a Remove the 3.5 inch disk from the host PC.

b Put that disk into the target PC disk drive.

c Reboot the target PC. The DOS is booted from the target boot disk and
the autoexec.bat files, resulting in the automatic execution of the xPC

5 Embedded Option

5-22

Target loader. From this point onwards, the CPU runs in protected mode
and DOS is discarded.

Otherwise, if you want to boot the target PC from flash memory instead of
the 3.5 inch disk, see “Copying the Kernel to Flash Memory” on page 5-14 for
a description of how to copy the kernel to flash memory. The same procedure
works with flash disks and other boot devices.

Copying the Kernel/Target Application to Flash Disk
You build a target application on a host PC using Real-Time Workshop,
xPC Target, and a C/C++ compiler. One method for transferring the files from
the host PC to a target PC is to use an external 3.5 disk drive.

After you build a stand-alone application on a host PC, you can copy files from
a 3.5 inch disk to the flash disk. If you have not already copied the necessary
files to a 3.5 inch disk, see “Creating a Kernel/Target Application” on page 5-21.

1 If there is a 3.5 disk in the target PC external disk drive, remove it. On the
target PC, press the Reset button.

2 Halt the boot process and bring up the DOS prompt. For example, if you see
the message for selecting the operating system to start, select Microsoft
Windows.

The boot process is stopped and a DOS prompt is displayed.

3 Insert the 3.5 inch disk with the stand-alone application and utility files into
the external 3.5 inch disk drive of the target PC.

4 Type

copy A:\xpc_osc3.rtb C:\work
copy A:\xpcboot.com C:\work
copy A:\autoexec.bat C:\work

5 If you want your stand-alone application to run when you press the Reset
button on your target PC, save a copy of the file C:\autoexec.bat to a
backup file, such as C:\autoexec_back.wrk.

Stand-Alone Target Setup

5-23

6 Edit the file C:\autoexec.bat to include the following lines. Adding these
commands to C:\autoexec.bat directs the system to execute the
autoexec.bat file located in C:\work.

cd C:\work
autoexec

Note Do not confuse C:\work\autoexec.bat with C:\autoexec.bat. The file
C:\work\autoexec.bat includes the command xpcboot.com to start the xPC
Target kernel and stand-alone application. The file C:\autoexec.bat includes
the files you want the system to execute when the system starts up.

7 Remove the 3.5 inch disk, and then, on the target PC, press the Reset
button.

The sequence of calls during the boot process is

a C:\autoexec.bat

b C:\work\autoexec.bat

c C:\work\xpcboot.com

d C:\work\<application>.rtb

8 On the target PC keyboard, press the spacebar.

A command line opens on the target PC screen.

For a complete list of target PC commands, see “Using the Target PC
Command-Line Interface” on page 7-1.

5 Embedded Option

5-24

6
Software Environment
and Demos

The xPC Target environment defines the connections and communication between the host and
target computers. It also defines the build process for a real-time application. You can define the xPC
Target environment through either the MATLAB interface or xPC Target GUI environment.

xPC Target provides a number of demos that help you understand the product.

Using Environment Properties and
Functions (p. 6-2)

Common tasks within the xPC Target software
environment

xPC Target Demos (p. 6-6) List of xPC Target demos, accessible from the MATLAB
Command Window

6 Software Environment and Demos

6-2

Using Environment Properties and Functions
Use the xPC Target Explorer window or the MATLAB Command Window to
enter environment properties that are independent of your model. This section
includes the following topics:

• “Getting a List of Environment Properties” on page 6-2
• “Changing Environment Properties with a Graphical Interface” on page 6-3
• “Changing Environment Properties with a Command-Line Interface” on

page 6-5

Refer to the function getxpcenv for a reference of the environment properties
and functions.

To enter properties specific to your model and its build procedure, see
“Entering the Real-Time Workshop Parameters” on page 3-40. These
properties are saved with your Simulink model.

Getting a List of Environment Properties
To use the xPC Target functions to change environment properties, you need
to know the names and allowed values of these properties. Use the following
procedure to get a list of the property names, their allowed values, and their
current values:

1 In the MATLAB window, type

setxpcenv

MATLAB displays a list of xPC Target environment properties and the
allowed values. For a list of the properties, see the function getxpcenv on
page 16-54.

2 Type

getxpcenv

MATLAB displays a list of xPC Target environment properties and the
current values.

Alternatively, you can use the xPC Target Explorer window to view and
change environment properties. In the MATLAB window, type xpcexplr.

Using Environment Properties and Functions

6-3

Changing Environment Properties with a Graphical
Interface
xPC Target lets you define and change environment properties. These
properties include the path to the C/C++ compiler, the host PC COM port, the
logging buffer size, and many others. Collectively these properties are known
as the xPC Target environment.

To change an environment property using the xPC Target GUI, xPC Target
Explorer, use the following procedure:

1 In the MATLAB window, type

xpcexplr

MATLAB opens the xPC Target Explorer window.

Note the contents of the left pane. This is the xPC Target Hierarchy pane.

This pane contains all the objects in your xPC Target hierarchy. As you add
objects to your system, xPC Target Explorer adds their equivalent nodes to
the xPC Target Hierarchy pane. The foremost node is the HostPC node. It
represents the host PC. The next node of importance is the TargetPC node.
Each time you add a target PC node to xPC Target Explorer, a corresponding

6 Software Environment and Demos

6-4

node is added to the xPC Target Hierarchy pane, starting with TargetPC1
and incrementing with the addition of each new target PC node.

The right pane displays information that reflects an item selected in the left
pane. This pane also displays xPC Target environment properties for the
HostPC and TargetPC nodes. You edit these properties in the right pane.

To change the size of the left or right pane, select and move the divider
between the panes left or right.

The Configuration node under the Target PC node has the property Target
boot mode. If your license does not include the xPC Target Embedded
Option, the Target boot mode box is grayed out, with BootFloppy as your
only selection. With the xPC Target Embedded Option, you have the
additional choices of DOSLoader and StandAlone.

2 Change properties in the environment in the right pane by entering new
property values in the text boxes or choosing items from the lists.

xPC Target Explorer applies changes to the environment properties as soon
as you make them in the right pane.

Using Environment Properties and Functions

6-5

Changing Environment Properties with a
Command-Line Interface
xPC Target lets you define and change different properties. These properties
include the path to the C/C++ compiler, the host COM port, the logging buffer
size, and many others. Collectively these properties are known as the xPC
Target environment.

You can use the command-line functions to write an M-file script that accesses
the environment settings according to your own needs. For example, you could
write an M-file that switches between two targets.

The following procedure shows how to change the COM port property for your
host PC from COM1 to COM2:

1 In the MATLAB window, type

setxpcenv('RS232HostPort','COM2')

The up-to-date column shows the values that you have changed, but have
not updated.

Making changes using the function setxpcenv does not change the current
values until you enter the update command.

2 In the MATLAB window, type

updatexpcenv

The environment properties you changed with the function setxpcenv
become the current values.

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM1
:115200

up to date
COM2
up to date

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM2
:115200

up to date
up to date
up to date

6 Software Environment and Demos

6-6

xPC Target Demos
The xPC Target demos are used to demonstrate the features of xPC Target. But
they are also M-file scripts that you can view to understand how to write your
own scripts for creating and testing target applications.

To Locate or Edit a Demo Script

1 In the MATLAB Command Window, type

which scfreerundemo

MATLAB displays the location of the M-file.

D:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos\scfreerundemo.m

2 Type

edit scfreerundemo

MATLAB opens the M-file in a MATLAB editing window.

Demo Filename

Parameter Sweep parsweepdemo

Signal tracing using free-run mode scfreerundemo

Signal tracing using software triggering scsoftwaredemo

Signal tracing using signal triggering scsignaldemo

Signal tracing using scope triggering scscopedemo

Signal tracing using the target scope tgscopedemo

Pre/post triggering of xPC Target scopes scprepostdemo

Time- and value-equidistant data logging dataloggingdemo

7
Using the Target PC
Command-Line Interface

You can interact with the xPC Target environment through the target PC command window. xPC
Target provides a limited set of commands that you can use to work with the target application after
it has been loaded to the target PC, and to interface with the scopes for that application.

Target PC Command-Line Interface
(p. 7-2)

Enter commands on the target PC for stand-alone
applications that are not connected to the host PC

7 Using the Target PC Command-Line Interface

7-2

Target PC Command-Line Interface
This interface is useful with stand-alone applications that are not connected to
the host PC. You can type commands directly from a keyboard on the target PC.
As you start to type at the keyboard, a command window appears on the target
PC screen. This section includes the following topics:

• “Using Target Application Methods on the Target PC” on page 7-2

• “Manipulating Target Object Properties from the Target PC” on page 7-3

• “Manipulating Scope Objects from the Target PC” on page 7-4

• “Manipulating Scope Object Properties from the Target PC” on page 7-6

• “Aliasing with Variable Commands on the Target PC” on page 7-6

For a complete list of target PC commands, refer to Chapter 14, “Target PC
Commands.”

Using Target Application Methods on the Target PC
xPC Target uses an object-oriented environment on the host PC with methods
and properties. While the target PC does not use the same objects, many of the
methods on the host PC have equivalent target PC commands. The target PC
commands are case sensitive, but the arguments are not.

After you have created and downloaded a target application to the target PC,
you can use the target PC commands to run and test your application:

1 On the target PC, press C.

The target PC command window is activated, and a command line opens. If
the command window is already activated, do not press C. In this case,
pressing C is taken as the first letter in a command.

2 In the Cmd box, type a target PC command. For example, to start your
target application, type

start

3 To stop the application, type

stop

Target PC Command-Line Interface

7-3

Once the command window is active, you do not have to reactivate it before
typing the next command.

Manipulating Target Object Properties from the
Target PC
xPC Target uses a target object to represent the target kernel and your target
application. This section shows some of the common tasks that you use with
target objects and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

1 On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

2 Type a target command. For example, to change the frequency of the signal
generator (parameter 1) in the model xpcosc, type

setpar 1=30

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

3 Check the value of parameter 1. For example, type

p1

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

4 Check the value of signal 0. For example, type

s0

7 Using the Target PC Command-Line Interface

7-4

The command window displays a message to indicate that the new
parameter has registered.

System: S0 has value 5.1851

5 Change the stop time. For example, to set the stop time to 1000, type

stoptime = 1000

The parameter changes are made to the target application but not to the
target object. When you type any xPC Target command in the MATLAB
Command Window, the target PC returns the current properties of the
target object.

Note The target PC command setpar does not work for vector parameters.

To see the correlation between a parameter or signal index and its block, you
can look at the model_name_pt.c or model_name_bio.c of the generated code
for your target application.

Manipulating Scope Objects from the Target PC
xPC Target uses a scope object to represent your target scope. This section
shows some of the common tasks that you use with scope objects.

These commands create a temporary difference between the behavior of the
target application and scope object. The next time you access the scope object,
the data is updated from the target PC.

1 On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

Target PC Command-Line Interface

7-5

2 Type a scope command. For example, to add a target scope (scope 2) in the
model xpcosc, type

addscope 2

xPC Target adds another scope monitor to the target PC screen. The
command window displays a message to indicate that the new scope has
registered.

Scope: 2, created, type is target S0

3 Type a scope command. For example, to add a signal (0) to the new scope,
type

addsignal 2=0

The command window displays a message to indicate that the new
parameter has registered.

Scope: 2, signal 0 added

You can add as many signals as necessary to the scope.

4 Type a scope command. For example, to start the scope 2, type

startscope 2

The target scope 2 starts and displays the signals you added in the previous
step.

Note If you add a target scope from the target PC, you need to start that
scope manually. If a target scope is in the model, starting the target
application starts that scope automatically.

7 Using the Target PC Command-Line Interface

7-6

Manipulating Scope Object Properties from the
Target PC
This section shows some of the common tasks that you use with target objects
and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

1 On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

2 Type a scope property command. For example, to change the number of
samples (1000) to acquire in scope 2 of the model xpcosc, type

numsamples 2=1000

3 Type a scope property command. For example, to change the scope mode
(numerical) of scope 2 of the model xpcosc, type

scopemode 2=numerical

The target scope 2 display changes to a numerical one.

Aliasing with Variable Commands on the Target PC
Use variables to tag (or alias) unfamiliar commands, parameter indices, and
signal indexes with more descriptive names.

After you have created and downloaded a target application to the target PC,
you can create target PC variables.

1 On the target PC keyboard, type a variable command. For example, if you
have a parameter that controls a motor, you could create the variables on
and off by typing

setvar on = p7 = 1
setvar off = p7 = 0

The target PC command window is activated when you start to type, and a
command line opens.

Target PC Command-Line Interface

7-7

2 Type the variable name to run that command sequence. For example, to turn
the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

7 Using the Target PC Command-Line Interface

7-8

8
Working with Target PC
Files and File Systems

xPC Target scopes of type file create files on the target PC. To work with these files from the host
PC, you need to work with the xpctarget.ftp and xpctarget.fs objects. The xpctarget.ftp object
allows you to perform basic FTP-like operations on the target PC file system. The xpctarget.fs
object allows you to perform file system-like operations on the target PC file system. This chapter
contains the following topics:

Introduction (p. 8-2) Introduction to the xpctarget.ftp and xpctarget.fs
objects

FTP and File System Objects (p. 8-4) Description of FTP and file system objects

Using xpctarget.ftp Objects (p. 8-5) Use the MATLAB Command Window to use file object
methods to access the target PC files from the host PC

Using xpctarget.fs Objects (p. 8-8) Use the MATLAB Command Window to use file system
methods to access the target PC file system from the host
PC

8 Working with Target PC Files and File Systems

8-2

Introduction
The xPC Target scope object of type file always writes acquired signal data to
a file on the target PC. You cannot direct the scope to write the data to a file on
the xPC Target host PC. Once xPC Target has written the signal data file to
the target PC, you can access the contents of the file for plotting or other
inspection from the host PC. xPC Target can write data files to

• The C:\ or D:\ drive of the target PC. This must be an Integrated Device
Electronics (IDE) drive. xPC Target supports file systems of type FAT-12,
FAT-16, or FAT-32.

• A 3.5 inch disk drive.

The largest single file that you can create is 4 GB.

Note that writing data files to 3.5 inch disk drives is considerably slower than
writing to hard drives.

You can access signal data files, or any target PC system file, in one of the
following ways:

• If you are running the target PC as a stand-alone system, you can access that
file by rebooting the target PC under an operating system such as DOS and
accessing the file through the operating system utilities.

• If you are running the target PC in conjunction with a host PC, you can
access the target PC file from the host PC by representing that file as an
xpctarget.ftp object. Through the MATLAB interface, use xpctarget.ftp
methods on that file object. The xpctarget.ftp object methods are file
transfer operations such as get and put.

• If you are running the target PC in conjunction with a host PC, you can
access the target PC file from the host PC by representing the target PC file
system as an xpctarget.fs object. Through the MATLAB interface, use the
xpctarget.fs methods on the file system and perform file system-like
methods such as fopen and fread on the signal data file. These methods
work like the MATLAB file I/O methods. The xpctarget.fs methods also
include file system utilities that allow you to collect target PC file system
information for the disk and disk buffers.

Introduction

8-3

This chapter describes procedures on how to use the xpctarget.ftp and
xpctarget.fs methods for common operations. See Chapter 16, “Function
Reference,” for a reference of the methods for these objects.

Note This section focuses primarily on working with the target PC data files
that you generate from an xPC Target scope object of type file.

8 Working with Target PC Files and File Systems

8-4

FTP and File System Objects
xPC Target uses two objects, xpctarget.ftp (FTP) and xpctarget.fs (file
system), to work with files on a target PC. You use the xpctarget.ftp object
to perform standard file transfer operations between the host and target PC.
You use the xpctarget.fs object to access the target PC file system. For
example, you can use an xpctarget.fs object to open, read, and close a signal
data file created by an xPC Target scope of type file.

To create an xpctarget.ftp object,

• Ensure that a target application exists on the target PC. xPC Target requires
that an application exist on the target PC before you can access the target
PC file.

• Use the file object constructor function xpctarget.ftp. In the MATLAB
Command Window, type f = xpctarget.ftp.

xPC Target uses a file system object on the host PC to represent the target PC
file system. You use file system objects to work with that file system from the
host PC.

To create an xpctarget.fs object,

• Ensure that a target application exists on the target PC. xPC Target requires
that an application exist on the target PC before you can access the target
PC file.

• Use the file object constructor function xpctarget.fs. In the MATLAB
window, type f = xpctarget.fs.

Both xpctarget.ftp and xpctarget.fs belong to the xpctarget.fsbase
object. This object encompasses the methods common to xpctarget.ftp and
xpctarget.fs. xPC Target creates the xpctarget.fs base object when you
create either an xpctarget.ftp or xpctarget.fs object.

Using xpctarget.ftp Objects

8-5

Using xpctarget.ftp Objects
The xpctarget.ftp object enables you to work with any file on the target PC,
including the data file that you generate from an xPC Target scope object of
type file. The xpctarget.ftp object has methods that allow you to use

• cd to change directories

• dir to list the contents of the current directory

• get (ftp) to retrieve a file from the target PC to the host PC

• mkdir to make a directory

• put to place a file from the host PC to the target PC

• pwd to get the current working directory path

• rmdir to remove a directory

The procedures in this section assume that the target PC has a signal data file
created by an xPC Target scope of type file. This file has the pathname
C:\data.dat. See “Simulink Model” in Chapter 3 of the Getting Started with
xPC Target documentation and “Signal Tracing with xPC Target Scope Blocks”
in Chapter 3 of this document for additional details.

This section includes the following topics:

• “Listing the Contents of the Target PC Directory” on page 8-5

• “Retrieving a File from the Target PC to the Host PC” on page 8-6

• “Copying a File from the Host PC to the Target PC” on page 8-7

xPC Target also provides methods that allow you to perform file system-type
manipulations, such as opening and reading files. For a complete list of these
methods, see “Using xpctarget.fs Objects” on page 8-8.

Listing the Contents of the Target PC Directory
You can list the contents of the target PC directory by using xPC Target
methods on the host PC for the xpctarget.ftp object. Use the method syntax
to run an xpctarget.ftp object method:

method_name(ftp_object)

8 Working with Target PC Files and File Systems

8-6

Note You must use the dir(f) syntax to list the contents of the directory. To
get the results in an M-by-1 structure, use a syntax like y=dir(f). See the dir
method reference for further details.

For example, to list the contents of the C:\ drive,

1 In the MATLAB window, type the following to assign the xpctarget.ftp
object to a variable:

f=xpctarget.ftp;

2 Type

f.pwd

This gets the current directory. You get a result like the following:

ans =
C:\

3 Type the following to the list the contents of this directory:

dir(f)

Retrieving a File from the Target PC to the Host PC
You can retrieve a copy of a data file from the target PC by using xPC Target
methods on the host PC for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name(ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)

For example, to retrieve a file named data.dat from the target PC C:\ drive
(default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable

f=xpctarget.ftp;

Using xpctarget.ftp Objects

8-7

2 Type

f.get('data.dat');

This retrieves the file and saves that file to the variable data. This content
is in the xPC Target file format.

Copying a File from the Host PC to the Target PC
You can place a copy of a file from the host PC by using xPC Target methods on
the host PC for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name(ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)

For example, to copy a file named data2.dat from the host PC to the target PC
C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp;

2 Type the following to retrieve the file and save that file to the variable data.

f.put('data2.dat');

8 Working with Target PC Files and File Systems

8-8

Using xpctarget.fs Objects
The fs object enables you to work with the target PC file system. The fs object
has methods that allow you to use

• cd to change directories

• dir to list the contents of the current directory

• diskinfo to get information about the current disk

• fclose to close a file (similar to MATLAB fclose)

• fileinfo to get information about a particular file

• filetable to get information about files in the file system

• fopen to open a file (similar to MATLAB fopen)

• fread to read a file (similar to MATLAB fread)

• fwrite to write a file (similar to MATLAB fwrite)

• getfilesize to get the size of a file in bytes

• mkdir to make a directory

• pwd to get the current working directory path

• removefile to remove a file from the target PC

• rmdir to remove a directory

Useful global utility:

• readxpcfile, to interpret the raw data from the fread method

The procedures in this section assume that the target PC has a signal data file
created by an xPC Target scope of type file. This file has the pathname
C:\data.dat.

This section includes the following topics:

• “Retrieving the Contents of a File from the Target PC to the Host PC” on
page 8-9

• “Removing a File from the Target PC” on page 8-11

• “Getting a List of Open Files on the Target PC” on page 8-11

• “Getting Information about a File on the Target PC” on page 8-12

• “Getting Information about a Disk on the Target PC” on page 8-13

Using xpctarget.fs Objects

8-9

xPC Target also provides methods that allow you to perform file transfer
operations, such as putting files on and getting files from a target PC. For a
description of these methods, see “Using xpctarget.ftp Objects” on page 8-5.

Retrieving the Contents of a File from the Target PC
to the Host PC
You can retrieve the contents of a data file from the target PC by using xPC
Target methods on the host PC for the xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to retrieve the contents of a file named data.dat from the target
PC C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

h=fsys.fopen('data.dat');

or

h=fopen(fsys,'data.dat');

This opens the file data.dat for reading and assigns the file identifier to h.

3 Type

data2=fsys.fread(h);

or

data2=fread(fsys,h);

This reads the file data.dat and stores the contents of the file to data2. This
content is in the xPC Target file format.

8 Working with Target PC Files and File Systems

8-10

4 Type

fsys.fclose(h);

This closes the file data.dat.

Before you can view or plot the contents of this file, you must convert the
contents. See “Converting xPC Target File Format Content to Bytes” on
page 8-10.

Converting xPC Target File Format Content to Bytes
If you have xPC Target file format content that you want to view or plot, you
need to convert that content to bytes. xPC Target provides the script
readxpcfile.m to convert xPC Target format content.

This section assumes that you have a variable, data2, that contains data in the
xPC Target file format (see “Retrieving the Contents of a File from the Target
PC to the Host PC” on page 8-9):

1 In the MATLAB window, change directory to the directory that contains the
xPC Target format file.

2 Type

new_data2=readxpcfile(data2);

The readxpcfile script converts the format of data2 from the xPC Target
file format to an array of bytes. It also creates a structure for that file in
new_data2, of which one of the elements is an array of doubles, data. The
data member is also appended with a time stamp vector. All data is returned
as doubles, which represent the real-world value of the original Simulink
signal at the specified time during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

Using xpctarget.fs Objects

8-11

Removing a File from the Target PC
You can remove a file from the target PC by using xPC Target methods on the
host PC for the xpctarget.ftp object. If you have not already done so, close
this file first with fclose.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to remove a file named data2.dat from the target PC C:\ drive
(default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type the following to remove the specified file from the target PC.

fsys.removefile('data2.dat');

or

removefile(fsys,'data2.dat');

Getting a List of Open Files on the Target PC
You can get a list of open files on the target PC file system from the host PC by
using xPC Target methods on the host PC for the xpctarget.fs object. Do this
to ensure you do not have files opened unnecessarily. The target PC file system
limits the number of open files you can have to eight.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to get a list of open files for the file system object fsys,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

8 Working with Target PC Files and File Systems

8-12

2 Type

fsys.filetable

If the file system has open files, a list like the following is displayed:

ans =
Index Handle Flags FilePos Name
--
 0 00060000 R__ 8512 C:\DATA.DAT
 1 00080001 R__ 0 C:\DATA1.DAT
 2 000A0002 R__ 8512 C:\DATA2.DAT
 3 000C0003 R__ 8512 C:\DATA3.DAT
 4 001E0001 R__ 0 C:\DATA4.DAT

3 The table returns the open file handles in hexadecimal. To convert a handle
to one that other xpctarget.fs methods, such as fclose, use the hex2dec
function. For example,

h1 = hex2dec('001E0001'))

h1 =
1966081

4 To close that file, use the xpctarget.fs fclose method. For example,

fsys.fclose(h1);

Getting Information about a File on the Target PC
You can display information for a file on the target PC file system from the host
PC by using xPC Target methods on the host PC for the xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the information for the file identifier fid1,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

Using xpctarget.fs Objects

8-13

2 Type

fid1=fsys.fopen('data.dat');

This opens the file data.dat for reading and assigns the file identifier to h.

3 Type

fsys.fileinfo(fid1);

This returns disk information like the following for the C:\ drive file system.

ans =
FilePos: 0

 AllocatedSize: 12288
 ClusterChains: 1
 VolumeSerialNumber: 1.0450e+009
 FullName: 'C:\DATA.DAT'

Getting Information about a Disk on the Target PC
You can display information for a disk on the target PC file system from the
host PC by using xPC Target methods on the host PC for the xpctarget.fs
object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the disk information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

fsys.diskinfo('C:\');

8 Working with Target PC Files and File Systems

8-14

This returns disk information like the following for the C:\ drive file system.

ans =
 Label: 'SYSTEM '
 DriveLetter: 'C'
 Reserved: ''
 SerialNumber: 1.0294e+009
 FirstPhysicalSector: 63
 FATType: 32
 FATCount: 2
 MaxDirEntries: 0
 BytesPerSector: 512
 SectorsPerCluster: 4
 TotalClusters: 2040293
 BadClusters: 0
 FreeClusters: 1007937
 Files: 19968
 FileChains: 22480
 FreeChains: 1300
 LargestFreeChain: 64349

9
Graphical User Interfaces

You can run and test your target application using the MATLAB command-line interface or the
Simulink block diagram for your application. You cannot modify these interfaces, but you can use
special blocks provided with xPC Target to interface signals and parameters from a target
application to create a custom graphical user interface (GUI) for your xPC Target application. This
chapter includes the following sections:

xPC Target Interface Blocks to
Simulink Models (p. 9-2)

Overview describing the software products you can use
with the To xPC Target and From xPC Target blocks

Interface with Dials & Gauges Blockset
(p. 9-8)

Example using Simulink, the Dials & Gauges Blockset,
and the To and From xPC Target blocks to create a
custom user interface to a target application

9 Graphical User Interfaces

9-2

xPC Target Interface Blocks to Simulink Models
You can use Simulink to create a custom graphical user interface (GUI) for
your xPC Target application. You do this by creating an user interface model
with Simulink and add-on products like the Dials & Gauges Blockset, Virtual
Reality Toolbox, and Altia Design (a third-party product). This section includes
the following topics:

• “Simulink User Interface Model” on page 9-2 — Simulink model with xPC
Target interface blocks to your target application and interface blocks to
graphical elements and interfaces

• “Creating a Custom Graphical Interface” on page 9-4 — The process for
creating a custom graphical interface includes tagging parameters and
signals, and then creating a Simulink user interface model with interface
blocks to these parameters and signals

• “To xPC Target Block” on page 9-5 — Simulink blocks that take new
parameter values from graphical elements and download those values to
your target application

• “From xPC Target Block” in Chapter 9 — Simulink blocks that upload signal
data from your target application and pass that data to graphical elements
for visualization

Simulink User Interface Model
A user interface model is a Simulink model containing Simulink blocks from
add-on products and interface blocks from xPC Target. This user interface
model can use Dials & Gauges or it can connect to a custom graphical interface
(using Virtual Reality Toolbox or Altia products). The user interface model
runs on the host PC and communicates with your target application running
on the target PC using To xPC Target and From xPC Target blocks.

The graphical user interface allows you to change parameters by downloading
them to the target PC, and to visualize signals by uploading data to the host
PC.

Dials & Gauges Blockset — The Dials & Gauges Blockset enables you to
include graphic controls and displays directly in your Simulink user interface
model. This user interface model is the graphical user interface to your target
application.

xPC Target Interface Blocks to Simulink Models

9-3

Virtual Reality Toolbox — The Virtual Reality Toolbox enables you to display
a Simulink user interface model in 3-D. It provides Simulink blocks that
communicate with xPC Target interface blocks. These blocks then
communicate with a graphical user interface. This graphical user interface is
a Virtual Reality Modeling Language (VRML) world displayed with a Web
browser using a VRML plug-in.

Altia Design — Altia also provides Simulink blocks that communicate with
xPC Target interface blocks. These blocks then communicate with Altia’s
graphical interface or with a Web browser using the Altia ProtoPlay plug-in.

xPC Target
interface

blocks

Host PC Target PC

Parameters

xPC Target
application

Signals
Dials &
Gauges
interface

Simulink
instrumentation

model

xPC Target
interface

blocks

Host PC Target PC

Parameters

xPC Target
application

Signals
Dials &
Gauges
interface

Simulink
instrumentation

model

Third-party
blocks

xPC Target
interface

blocks

Host PC Target PC

Parameters

xPC Target
application

Signals

Custom
graphical
interface

Simulink
instrumentation

model

9 Graphical User Interfaces

9-4

Creating a Custom Graphical Interface
xPC Target provides Simulink interface blocks to connect graphical interface
elements to your target application. The steps for creating your own custom
graphical interface are listed below. For more information, see “Interface with
Dials & Gauges Blockset” on page 9-8.

1 In the Simulink target application model, decide which block parameters
and block signals you want to have access to through graphical interface
control devices and graphical interface display devices.

2 Tag all block parameters in the Simulink model that you want to be
connected to a control device. See “Marking Block Parameters” on page 9-13.

3 Tag all signals in the Simulink model that you want to be connected to a
display device. See “Marking Block Signals” on page 9-15.

4 In MATLAB, run the function xpcsliface('model_name') to create the
user interface template model. This function generates a new Simulink
model containing only the xPC Target interface blocks (To xPC Target and
From xPC Target) defined by the tagged block parameters and block signals
in the target application model. See “Creating a User Interface Model” on
page 9-19.

5 To the user interface template model, add Simulink interface blocks from
add-on and third-party products (Dials & Gauges Blockset, Virtual Reality
Toolbox, Altia Design). Connect these blocks to the xPC Target interface
blocks (To PC Target and From xPC Target). The To xPC Target blocks on
the left should be connected to control devices, and the From xPC Target
blocks on the right should be connected to the display devices. You can
position these blocks to your liking.

6 Start both the xPC target application and the Simulink user interface model
that represents the xPC Target application. See “Running a Target
Application with a User Interface Model” on page 9-23.

To xPC Target Block
This block behaves as a sink and usually receives its input data from a control
device. The purpose of this block is to write a new value to a specific parameter
on the target application while it is running.

xPC Target Interface Blocks to Simulink Models

9-5

This block is implemented as an M-file S-function. The block is optimized so
that it only changes a parameter on the target application when the input
value differs from the value that existed at the last time step. This block uses
the parameter downloading feature of the xPC command-line interface. This
block is available from the xpclib/Misc block sublibrary.

Note The use of To xPC Target blocks require a connection between the host
and target PC. If there is no connection between the host and target PC,
operations such as opening a model that contains these blocks or copying
these blocks within or between models, will take significantly longer than
normal.

Control device
block

To xPC Target
block

Host PC Target PC

Parameter

xPC Target applicationSimulink instrumentation model

Control device
block

To xPC Target
block

Host PC Target PC

Parameter

xPC Target applicationSimulink instrumentation model

9 Graphical User Interfaces

9-6

Block Parameters
xPC Target application name — The function xpcsliface automatically
enters a name entry for this parameter. It is the same name as the Simulink
model that xPC Target uses to build the target application.

Path to block in model running on xPC target — The function xpcsliface
automatically enters an entry for this parameter and uses it to access the block
identifier.

Parameter name — The function xpcsliface automatically determines the
entry for this parameter and enters it. Note that the parameter name might
not match the label name for that parameter in the Block Parameters dialog
box. For example, the label name for a gain block is Constant value, but the
parameter name is Value.

From xPC Target Block
This block behaves like a source and its output is usually connected to the input
of a display device.

Because only one numerical value per signal is uploaded during a time step,
the number of samples of a scope object is set to 1. The block uses the signal
tracing capability of the xPC Target command-line interface and is
implemented as an M-file S-function. This block is available from the
xpclib/Misc sublibrary.

Display device
block

From xPC Target
block

Host PC Target PC

Signal

xPC Target applicationSimulink instrumentation model

Display device
block

From xPC Target
block

Host PC Target PC

Signal

xPC Target applicationSimulink instrumentation model

xPC Target Interface Blocks to Simulink Models

9-7

Note The use of From xPC Target blocks require a connection between the
host and target PC. If there is no connection between the host and target PC,
operations such as opening a model that contains these blocks or copying
these blocks within or between models, will take significantly longer than
normal.

Block Parameters
xPC Target application name — The function xpcsliface automatically
enters a name entry for this parameter. It is the same name as the Simulink
model that xPC Target uses to build the target application.

Signal name (block name) — The function xpcsliface automatically enters
a name entry for this parameter.

Observer sample time — The function xpcsliface automatically enters the
sample time for the Simulink block with this signal. It can be equal to the
model base sample time or a multiple of the base sample time.

9 Graphical User Interfaces

9-8

Interface with Dials & Gauges Blockset
Use the Dials & Gauges Blockset and xPC Target interface blocks to create a
custom graphical user interface (GUI) for your xPC Target application. This
method allows you to create a user interface (UI) within a Simulink model.

This section includes the following topics:

• “Introduction to the Dials & Gauges Blockset” on page 9-8 — What is the
Dials & Gauges Blockset?

• “Target Application Model Description” on page 9-11 — An example control
system using a water tank, pump, drain, and valve controller

• “Creating a Target Application Model” on page 9-12 — A Simulink model for
your physical system and controller. xPC Target uses this model to create a
target application.

• “Marking Block Parameters” on page 9-13 — Parameters you want to change
using dial blocks

• “Marking Block Signals” on page 9-15 — Signals you want to visualize using
gauge blocks

• “Creating a User Interface Model” on page 9-19 — Create a Simulink user
interface model as a graphical user interface to a target application.

• “Adding Dials & Gauges Blockset” in Chapter 9 — Dials for changing
parameters and gauges for visualizing signals

• “Creating a Target Application” on page 9-21 — Create a real-time
application from your Simulink application model using Real-Time
Workshop and a C compiler.

• “Running a Target Application with a User Interface Model” on page 9-23 —
Start the target application running in real time and the user interface
model running in nonreal time.

Introduction to the Dials & Gauges Blockset
Using the Dials & Gauges Blockset as a graphical interface to your target
application simplifies and enhances user interaction by providing an
alternative to using a command-line interface.

The Dial & Gauges Blockset consists of a library of blocks that you add to your
Simulink model. When used with xPC Target, components from the Dials &

Interface with Dials & Gauges Blockset

9-9

Gauges Blockset provide a graphical user interface that you use from your host
PC. The graphical user interface allows you to change parameters that are then
downloaded to your target PC. Other components from the Dials & Gauges
Blockset provide animation of data uploaded from the target PC. While you
change parameters or view the animation, your target application continues to
run in real time.

The Dials & Gauges Blockset includes control blocks and display blocks.

Control blocks — A control block is a block that you use to provide an input
using a mouse or keyboard. For example, a control block could be a slider or a
dial. Its output drives other blocks in the target application model and provides
a visual display of the output parameters.

Display blocks — A display block is a block that you use to view signals on
your host computer. For example, a display block could be a tachometer or a
gauge. A display block receives its input from the target application model and
provides a visual display of the input signal.

Dials & Gauges Blockset Blocks
The Dials & Gauges Blockset consists of approximately sixty blocks grouped
into the following block collections:

• Angular Gauges — Controls that show their input value graphically along
an arc of a circle.

• Buttons & Switches (toggle)— Two-state controls that change state when
you click on them

• Knobs & Selectors — Controls that change their output values when you
drag a knob around a circle

• LEDs — Controls that use graphical elements to imitate light-emitting
diodes (LEDs)

• Linear Gauges —Displays that graphically show an input value along a
linear scale

• Numeric Displays — Controls that display the numeric value of their input
signals

• Percent Indicators — Controls that display percentages and ratios.

• Sliders — Controls that model a knob sliding along a bar and that output the
numerical value corresponding to the knob position.

9 Graphical User Interfaces

9-10

• Strip Chart — A display where the input value traces from left to right

This environment allows you to interact with your target application using a
graphical user interface while the target application is running in real time on
the target PC.

The procedure for using xPC Target with the Dial & Gauges Blockset consists
of the following steps:

1 Install software for MATLAB, Simulink, Real-Time Workshop, xPC Target,
third-party C compiler, and Dials & Gauges Blockset.

2 Create a Simulink target application model containing model equations
describing the dynamic behavior of the application you want to run in real
time on the target PC. See “Creating a Target Application Model” on
page 9-12.

3 In your target application model, tag block properties and block signals. See
“Marking Block Parameters” on page 9-13 and “Marking Block Signals” on
page 9-15.

4 Create a Simulink user interface model using Dials & Gauges Blockset
blocks as graphical user interface components (for example, control and
display devices). See “Creating a User Interface Model” on page 9-19 and
“Adding Dials & Gauges Blockset” on page 9-20.

xPC Target
interface

blocks

Host PC Target PC

Parameters

xPC Target
application

Signals
Dials &
Gauges
interface

Simulink
instrumentation

model

xPC Target
interface

blocks

Host PC Target PC

Parameters

xPC Target
application

Signals
Dials &
Gauges
interface

Simulink
instrumentation

model

Interface with Dials & Gauges Blockset

9-11

5 Create a target application and download it to the target PC. See “Creating
a Target Application” on page 9-21.

6 Start a simulation of the user interface model in nonreal time, and then start
the target application running in real time. See “Running a Target
Application with a User Interface Model” on page 9-23.

Target Application Model Description
xPC Target includes the Simulink model xpctank.mdl. This is a model of a
water tank with a pump, drain, and valve controller. See “Creating a Target
Application Model” on page 9-12 for an implementation of this model.

TankLevel — The water level in the tank is modeled using a limited integrator
named TankLevel.

PumpSwitch — The pump can be turned off manually to override the action of
the controller. This is done by setting PumpSwitch = 0. When PumpSwitch = 1,
the controller is able to use the ControlValve to pump water into the tank.

ValveSwitch (drain valve) — The tank has a drain valve that allows water to
flow out of the tank. Think of this as water usage or consumption that reduces
the water level. This behavior is modeled with the constant block named
ValveSwitch, the gain block Gain2, and a summing junction. The minus sign
on the summing junction has the effect of producing a negative flow rate (drain)
that reduces the water level in the tank.

Although the ValveSwitch is modeled as a constant block, you can later alter
its value using the Dials & Gauges Blockset. When ValveSwitch = 0 (closed),
the valve is closed and water cannot flow out of the tank. When ValveSwitch =
1 (open), the valve is open and the water level is reduced by draining the tank.

Controller — The controller is very simple. It is a bang-bang controller and
can only maintain the selected water level by turning the control valve (pump
valve) on or off. A water level set point is used to define the desired median
water level. Hysteresis is provided to enable the pump to avoid high-frequency
on and off cycling. This is done using symmetric upper and lower bounds that
are offsets to the median set point. As a result, the controller turns the control
valve (pump valve) on whenever the water level is below the set point minus
the offset. The summing junction compares this lower bound against the tank
water level to determine whether or not to open the control valve. If the pump
is turned on (PumpSwitch = 1), water is pumped into the tank. When the water

9 Graphical User Interfaces

9-12

level reaches or exceeds the set point plus the upper bound, the controller turns
off the control valve. Regardless of whether the pump is on or off, water stops
pumping into the tank.

Scope blocks — A standard Simulink Scope block is added to the model to view
signals during a simulation. xPC Target Scope blocks are added to the model
for you to view signals while running the target application. Scope-Id1
displays the actual water level and the selected water level in the tank.
Scope-Id2 displays the control signals. Both scopes are displayed on the target
PC using a scope of type target. These scope blocks cannot be controlled by the
Dials & Gauges Blockset or xPC Target interface blocks.

Note that the model xpctank.mdl does not contain any Dials & Gauges
Blockset blocks or xPC Target interface blocks. This model is built entirely
from standard Simulink blocks and Scope blocks from xPC Target. It does not
differ in any way from a model you would normally use with xPC Target and it
does not require any changes (except for tagging properties and signals) to use
it with a Dials & Gauges Blockset interface.

Creating a Target Application Model
A target application model is a Simulink model that describes your physical
system, a controller, and its behavior. You use this model to create a real-time
target application, and you use this model to select the parameters and signals
you want to connect to a custom graphical interface.

You do not have to modify this model when you use it with the Dials & Gauges
Blockset, Virtual Reality Toolbox, or other third-party graphical elements.

Creating a target application model is the first step you need to do before you
can tag block parameters and block signals for creating a custom graphical
interface:

1 In the MATLAB Command Window, type

xpctank

A Simulink model for a water tank opens. This model contains a set of
equations to describe the behavior of a water tank and a simple controller.

The controller regulates the water level in the tank. This model contains
only standard Simulink blocks and you use it to create the xPC Target
application.

Interface with Dials & Gauges Blockset

9-13

2 From the File menu, click Save as and enter a new filename. For example,
enter xpc_tank and then click OK.

Your next task is to mark the block properties and block signals. See “Marking
Block Parameters” on page 9-13 and “Marking Block Signals” on page 9-15.

Marking Block Parameters
Tagging parameters in your Simulink model allows the function xpcsliface to
create To xPC Target interface blocks. These interface blocks contain the
parameters you connect to control devices (dials) in your user interface model.

After you create a Simulink model, you can mark the block parameters. This
procedure uses the model xpc_tank1.mdl (or xpctank.mdl) as an example (see
“Creating a Target Application Model” on page 9-12).

1 Open a Simulink model. For example, in the MATLAB window, type

xpc_tank or xpctank

2 Point to a Simulink block, and then right-click.

3 From the menu, click Block properties. (Do not click Constant
parameters.)

9 Graphical User Interfaces

9-14

A Block properties dialog box opens.

4 In the Description box, delete the existing tag and enter a tag to the
parameters for this block.

For example, the SetPoint block is a constant with a single parameter that
selects the level of water in the tank. Enter the tag shown below.

The tag has the following format:

xPCTag(1, . . . index_n)= label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

xPCTag=label;

index_n — Index of a block parameter. Begin numbering parameters with
an index of 1.

label_n — Name for a block parameter that will be connected to a To xPC
Target block in the user interface model. Separate the labels with a space,
not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

Interface with Dials & Gauges Blockset

9-15

For example, for the Controller block, enter the tag

For the PumpSwitch and ValveSwitch blocks, enter the following tags
respectively:

xPCTag(2)=pump_switch;

xPCTag(1)=drain_valve;

To create the To xPC blocks in an user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To create the To xPC blocks for the second and fourth properties in a block
with at least four properties, use the following syntax:

xPCTag(2,4)=label_1 label_2;

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

You next task is to mark block signals if you have not already done so, and then
create the user interface template model. See “Marking Block Signals” on
page 9-15 and “Creating a User Interface Model” on page 9-19.

Marking Block Signals
Tagging signals in your Simulink model allows the function xpcsliface to
create From xPC Target interface blocks. These interface blocks contain the
signals you connect to display devices (gauges) in your user interface model.

After you create a Simulink model, you can mark the block signals. This
procedure uses the model xpc_tank1.mdl (or xpctank.mdl) as an example. See
“Creating a Target Application Model” on page 9-12.

9 Graphical User Interfaces

9-16

Note that you cannot select signals on the output ports of any virtual blocks
such as Subsystem and Mux blocks. Also, you cannot select signals on any
function-call triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB window, type

xpc_tank or xpc_tank1

2 Point to a Simulink signal line, and then right-click.

3 From the menu, click Signal properties.

A Signal properties dialog box opens.

4 Select the Documentation tab.

5 In the Description box, enter a tag to the signals for this line.

For example, the block labeled TankLevel is an integrator with a single
signal that indicates the level of water in the tank. Replace the existing tag
with the tag shown below.

Interface with Dials & Gauges Blockset

9-17

The tag has the following format syntax

xPCTag(1, . . . index_n)=label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

XPCTag=label:

- index_n — Index of a signal within a vector signal line. Begin numbering
signals with an index of 1.

- label_n — Name for a signal that will be connected to a From xPC Target
block in the user interface model. Separate the labels with a space, not a
comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

To create the From xPC blocks in an user interface model for a signal line
with four signals (port dimension of 4), use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4

To create the From xPC blocks for the second and fourth signals in a signal
line with at least four signals, use the following syntax:

9 Graphical User Interfaces

9-18

xPCTag(2,4)=label_1 label_2;

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

Your next task is to mark block parameters if you have not already done so, and
then create the user interface template model. See “Marking Block
Parameters” on page 9-13 and “Creating a User Interface Model” on page 9-19.

Description of the User Interface Model
xPC Target includes the Simulink model xpctank.mdl. This is the model of a
water tank with a pump, drain, and valve controller. See “Creating a Target
Application Model” on page 9-12. Using Real-Time Workshop, xPC Target, and
a third-party compiler, you can create a real-time target application from this
model.

A user interface model is a Simulink user interface model you create as a
graphical interface to a target application. You do this by using dial blocks,
gauges blocks, and xPC Target interface blocks.

After you create a user interface template model with xPC Target interface
blocks, you can create a user interface model with the following controls and
displays:

• Pump Switch Value — Override the bang-bang controller by using a
manual switch to turn the pump on and off. Turn the pump on or off by
setting PumpSwitch to 1 or 0. Use a toggle switch.

• Drain Valve Value — Open or close the drain valve by setting ValveSwitch
to 1 or 0. Use a toggle switch.

• SetPoint Value — Change the level of the water in the tank by changing the
SetPoint block parameter Constant value. Use a slider to set this value.

• TankLevel — This is the water level and the output from the Integrator
block TankLevel. Use a tank gauge to visualize this signal.

• Controller OnOutputValue — Change the pump flow rate by changing the
Controller block parameter Output when on. Use a slider to set this value.

Interface with Dials & Gauges Blockset

9-19

• Controller OnSwitchValue/Controller OffSwitchValue — Select the
upper and lower water level by changing the Controller block parameters
Switch on point and Switch off point. Use a slider to set these values.

This single value adjusts the offset, which is the maximum and minimum
change the water level is allowed above or below the set point before
corrective action is taken by either turning the pump on or turning the pump
off.

Creating a User Interface Model
A user interface model contains components from the Dials & Gauges Blockset
and xPC Target interface blocks. It functions as a graphical user interface that
allows you to view signals with gauges and change parameters using dials.

After you tag block properties and block signals, you are ready to generate the
user interface template model containing xPC Target interface blocks. These
blocks connect your user interface model with your target application.

This procedure uses the Simulink model xpc_tank1.mdl as an example, and
assumes you have tagged the block properties and block signals (see “Marking
Block Parameters” on page 9-13 and “Marking Block Signals” on page 9-15).

1 In the MATLAB window, type

xpc_tank1

A window with the Simulink model xpc_tank1.mdl opens.

2 Type

xpcsliface('xpc_tank1')

A new Simulink window opens with the user interface template model.

3 From the Simulation menu, click Configuration Parameters.

The Configuration Parameters dialog is displayed.

4 In the left pane, click the Solver node.

5 Simulink displays the Solver pane. This pane defines the initial stop and
sample time for your target application.

9 Graphical User Interfaces

9-20

6 In the Stop time box, enter inf. From the Type list, select Fixed-step.
From the solver list, select discrete (no continuous states). In the Fixed
step size box, enter auto.

Your Solver pane should look similar to the one shown below.

Note The user interface model should only contain discrete-time elements,
and therefore you should only select the discrete solver. The model should not
contain any continuous-time states.

Your next task is to add dials and gauges and connect them to the xPC Target
interface blocks. See “Adding Dials & Gauges Blockset” on page 9-20.

Adding Dials & Gauges Blockset
Open the model xpctankpanel.mdl for an example of connecting dials and
gauges to xPC Target interface blocks. You model should look similar to the
figure shown below.

Interface with Dials & Gauges Blockset

9-21

If you do not see the dials and gauges in the Active X blocks, try registering the
Active X controls. In the MATLAB window, type

dng_register_ocx

Your next tasks are to create the target application from a target application
model, and then run that application with the user interface model. See
“Creating a Target Application” on page 9-21 and “Running a Target
Application with a User Interface Model” on page 9-23.

Creating a Target Application
Use this procedure to create a target application that you want to connect to a
Simulink user interface model as a graphical interface with dial and gauge
blocks.

After you create a Simulink model and tag the block parameters and block
signals for creating xPC Target interface blocks, you can create a target
application and download it to the target PC. This procedure uses the Simulink
model xpc_tank1.mdl (or xpctank.mdl) as an example (see “Creating a Target
Application Model” on page 9-12).

9 Graphical User Interfaces

9-22

1 Start or reset the target PC with an xPC Target boot disk in the 3.5 inch disk
drive.

2 In the MATLAB window, type

xpc_tank1 or xpctank

3 From the Simulation menu, click Configuration Parameters.

The Configuration Parameters dialog is displayed.

4 In the left pane, click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

5 In the Target selection section, click the Browse button at the RTW system
target file list. Click xpctarget.tlc, and then click OK.

The system target file xpctarget.tlc, the template makefile
xpc_default_tmf, and the make command make_rtw are automatically
entered into the page.

6 In the left pane, click the Solver node.

The Solver pane is displayed.

7 Check that the Stop time is long enough for you to interact with the target
application.

8 Click OK.

9 From the Tools menu, point to Real-Time Workshop, and then click Build
model.

Real-Time Workshop, xPC Target, and a third-party C compiler create the
target application and download it to the target PC.

Your next task is to start running the target application in real time and start
a simulation of the user interface model. See “Running a Target Application
with a User Interface Model” on page 9-23.

Interface with Dials & Gauges Blockset

9-23

Running a Target Application with a User Interface
Model
After you create an xPC Target application, download that application to the
target PC, and create a Simulink user interface model, you are ready to use the
user interface model as a graphical interface to the target application (see
“Creating a Target Application Model” on page 9-12 and “Creating a User
Interface Model” on page 9-19).

1 In the MATLAB window, type

xpc_tank1_gui or xpctankpanel

2 Type

start(tg) or +tg

The target application starts running in real time on the target PC.

3 In the Simulink window for the user interface model, from the Simulation
menu, click Normal, and then click Start.

The user interface model begins a simulation in nonreal time. You should
observe graphical information made available through the Dials & Gauges
Blockset components. For example, the tank icon shows the water level
rising.

When starting the simulation of your GUI interface, you might get an error
with one or more of the To xPC Target or From xPC Target blocks. To correct
this problem, create a temporary GUI using the function
xpcsliface('xpc_tank1'), delete the problem blocks, and then copy new
xPC Target interface blocks from the temporary GUI. Save the model and
restart the simulation.

4 Click the pump switch or drain valve buttons, or click and drag the slider
knobs to change parameters to new values.

9 Graphical User Interfaces

9-24

10
xPC Target Web Browser
Interface

xPC Target has a Web server that allows you to interact with your target application through a Web
browser. You can access the Web browser with either a TCP/IP or serial (RS-232) connection. This
chapter includes the following section:

Web Browser Interface (p. 10-2) Connect a target application running on a target PC to
any host PC connected to a network

10 xPC Target Web Browser Interface

10-2

Web Browser Interface
xPC Target has a Web server built into the kernel that allows you to interact
with your target application using a Web browser. If the target PC is connected
to a network, you can use a Web browser to interact with the target application
from any host PC connected to the network.

Currently Microsoft Internet Explorer (Version 4.0 or later) and Netscape
Navigator (Version 4.5 or later) are the only supported browsers.

This section includes the following topics:

• “Connecting the Web Interface Through TCP/IP” on page 10-2

• “Connecting the Web Interface Through RS-232” on page 10-3

• “Using the Main Pane” on page 10-6

• “Changing WWW Properties” on page 10-9

• “Viewing Signals with a Web Browser” on page 10-10

• “Viewing Parameters with a Web Browser” on page 10-11

• “Changing Access Levels to the Web Browser” on page 10-11

Connecting the Web Interface Through TCP/IP
If your host PC and target PC are connected with a network cable, you can
connect the target application on the target PC to a Web browser on the host
PC.

The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, because its main objective is real-time applications. This
connection is shared between MATLAB and the Web browser. This also means
that only one browser or MATLAB is able to connect at one time.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your browser must have JavaScript and
StyleSheets turned on.

Web Browser Interface

10-3

1 In the MATLAB window, type

xpcwwwenable

MATLAB is disconnected from the target PC, and the connection is reset for
connecting to another client. If you do not use this command, your Web
browser might not be able to connect to the target PC.

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Explorer window. For example, if
the target computer IP address is 192.168.0.1 and the port is 22222, type

http://192.168.0.1:22222/

The browser loads the xPC Target Web interface frame and panes.

Connecting the Web Interface Through RS-232
If the host PC and target PC are connected with a serial cable instead of a
network cable, you can still connect the target application on the target PC to
a Web browser on the host PC. xPC Target includes a TCP/IP to RS-232
mapping application. This application runs on the host PC and writes whatever
it receives from the RS-232 connection to a TCP/IP port, and it writes whatever
is receives from the TCP/IP port to the RS-232 connection. TCP/IP port
numbers must be less than 216 = 65536.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your Web browser must have JavaScript
and StyleSheets turned on.

1 In the MATLAB window, type

xpcwwwenable or close(xpc)

MATLAB is disconnected from the target PC, leaving the target PC ready to
connect to another client. The TCP/IP stack of the xPC Target kernel
supports only one simultaneous connection. If you do not use this command,
the TCP/IP to RS-232 gateway might not be able to connect to the target PC.

2 Open a DOS command window, and enter the command to start the TCP/IP
to RS-232 gateway. For example, if the target PC is connected to COM1 and
you would like to use the TCP/IP port 22222, type the following:

10 xPC Target Web Browser Interface

10-4

c:\<MATLAB root>\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser -v
-t 22222 -c 1

For a description of the xpctcp2ser command, see “Syntax for the xpctcp2ser
Command” on page 10-5.

The TCP/IP to RS-232 gateway starts running, and the DOS command
window displays the message

--
* xPC Target TCP/IP to RS-232 gateway *
* Copyright 2002 The MathWorks *
--
Connecting COM to TCP port 22222
Waiting to connect

If you did not close the MATLAB to target application connection, then
xpxtcp2ser displays the message Could not initialize COM port.

3 Open a Web browser. In the address box, enter

http://localhost:22222/

The Web browser loads the xPC Target Web interface panes.

4 Using the Web interface, start and stop the target application, add scopes,
add signals, and change parameters.

5 In the DOS command window, press Ctrl+C.

The TCP/IP to RS-232 Gateway stops running, and the DOS command
window displays the message

interrupt received, shutting down

The gateway application has a handler that responds to Ctrl+C by
disconnecting and shutting down cleanly. In this case, Ctrl+C is not used to
abort the application.

Web Browser Interface

10-5

6 In the MATLAB Command Window, type

xpc

MATLAB reconnects to the target application and lists the properties of the
target object.

If you did not close the gateway application, MATLAB displays the message

Error in ==>
C:\MATLABR13\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m
On line 31 ==> sync(xpcObj);

You must close MATLAB and then restart it.

Syntax for the xpctcp2ser Command
The xpctcp2ser command starts the TCP/IP to RS-232 gateway. The syntax
for this command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]
xpctcp2ser -h

The options are described in the following table.

Command-
Line Option

Description

-v Verbose mode. Produces a line of output every time a client
connects or disconnects.

-n Allows nonlocal connections. By default, only clients from
the same computer that the gateway is running on are
allowed to connect. This option allows anybody to connect to
the gateway.

If you do not use this option, only the host PC that is
connected to the target PC with a serial cable can connect to
the selected port. For example, if you start the gateway on
your host PC, with the default ports, you can type in the
Web browser http://localhost:2222. However, if you try
to connect to http://Domainname.com:22222, you will
probably get a connection error.

10 xPC Target Web Browser Interface

10-6

Using the Main Pane
The Main pane is divided into four parts, one below the other. The four parts
are System Status, xPC Target Properties, Navigation, and WWW
Properties.

-t tcpPort Use TCP port tcpPort. Default t is 22222. For example, to
connect to port 20010, type -t 20010.

-h Print a help message.

-c comPort Use COM port comPort (1 <= comPort <= 4). Default is 1.
For example, to use COM2, type -c 2.

Command-
Line Option

Description

Web Browser Interface

10-7

After you connect a Web browser to the target PC, you can use the Main pane
to control the target application:

10 xPC Target Web Browser Interface

10-8

1 In the left frame, click the Refresh button.

System status information in the top cell is uploaded from the target PC. If
the right frame is either the Signals List pane or the Screen Shot pane,
updating the left frame also updates the right frame.

2 Click the Start Execution button.

The target application begins running on the target PC, the Status line is
changed from Stopped to Running, and the Start Execution button text
changes to Stop Execution.

3 Update the execution time and average task execution time (TET). Click the
Refresh button. To stop the target application, click the Stop Execution
button.

4 Enter new values in the StopTime and SampleTime boxes, then click the
Apply button. You can enter -1 or Inf in the StopTime box for an infinite
stop time.

Web Browser Interface

10-9

The new property values are downloaded to the target application. Note that
the SampleTime box is visible only when the target application is stopped.
You cannot change the sample time while a target application is running.

5 Select scopes to view on the target PC. From the ViewMode list, select one
or all of the scopes to view.

Note The ViewMode control is visible in the xPC Target Properties pane
only if you add two or more scopes to the target PC.

Changing WWW Properties
The WWW Properties cell in the left frame contains fields that affect the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display, and refresh interval:

1 In the Maximum Signal Width box enter -1, Inf (all signals), 1 (show only
scalar signals), 2 (show scalar and vector signals less than or equal to 2
wide), or n (show signals with a width less than or equal to n).

Signals with a width greater than the value you enter are not displayed on
the Signals pane.

10 xPC Target Web Browser Interface

10-10

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal pane updates automatically every 20 seconds. Entering -1 or Inf
does not automatically refresh the pane.

Sometimes, both the frames try to update simultaneously, or the auto refresh
starts before the previous load has finished. This problem can happen with
slow network connections. In this case, increase the refresh interval or
manually refresh the browser (set the Refresh Interval = Inf).

This can also happen when you are trying to update a parameter or property
at the same time that the pane is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you might have to refresh it. This should not happen often.

Viewing Signals with a Web Browser
The Signals pane is a list of the signals in your model.

After you connect a Web browser to the target PC you can use the Signals pane
to view signal data:

1 In the left frame, click the Signals button.

The Signals pane is loaded in the right frame with a list of signals and the
current values.

2 On the Signals pane in the right frame, click the Refresh button.

The Signals pane is updated with the current values. Vector/matrix signals
are expanded and indexed in the same column-major format that MATLAB
uses. This can be affected by the Maximum Signal Width value you enter
in the left frame.

3 In the left frame, click the Screen Shot button.

The Screen Shot pane is loaded and a copy of the current target PC screen
is displayed. The screen shot uses the portable network graphics (PNG) file
format.

Web Browser Interface

10-11

Viewing Parameters with a Web Browser
The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC, you can use the Parameters
pane to change parameters in your target application while it is running in real
time:

1 In the left frame, click the Parameters button.

The Parameter List pane is loaded into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, press the Edit button to view the
vector or matrix (in the correct shape). You can edit the parameter in this
pane.

2 In the Value box, enter a new parameter value, and then click the Apply
button.

Changing Access Levels to the Web Browser
The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level, 4,
only allows signal monitoring and tracing with your target application:

1 In the Simulink window, click Configuration Parameters.

The Configuration Parameters dialog box for the model is displayed.

2 Click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

3 In the Target selection section, access levels are set in the RTW system
target file box. For example, to set the access level to 1, enter

10 xPC Target Web Browser Interface

10-12

xpctarget.tlc -axpcWWWAccessLevel=1

The effect of not specifying -axpcWWWAccessLevel is that the highest access
level (0) is set.

4 Click OK.

The various fields disappear, depending on the access level. For example, if
your access level does not allow you access to the parameters, you do not see
the button for parameters.

There are various access levels for monitoring, which allow different levels of
hiding. The proposed setup is described below. Each level builds on the
previous one, so only the incremental hiding of each successive level is
described.

Level 0 — Full access to all panes and functions.

Level 1 — Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 — Cannot start and stop execution of the target application or log data.

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 — Cannot edit existing scopes on the Scopes pane. Cannot add or
remove signals on the Scopes pane. Cannot view the Signals pane and the
Parameters pane, and cannot get scope data.

11
Interrupts Versus Polling

xPC Target interrupt mode is the default real-time execution mode for the xPC Target kernel. For
performance reasons, you might want to change the real-time execution mode to polling mode. This
chapter includes the following section:

Polling Mode (p. 11-2) Use polling mode as an alternative to interrupt mode for
reducing latency times with I/O drivers

11 Interrupts Versus Polling

11-2

Polling Mode
A good understanding of polling mode will help you to use it effectively, and a
better understanding of interrupt mode will help you to decide under which
circumstances it makes sense for you to switch to the polling mode. This section
includes the following topics:

• “xPC Target Kernel Polling Mode” on page 11-2
• “Interrupt Mode” on page 11-2

• “Polling Mode” on page 11-4

• “Setting the Polling Mode” on page 11-6

• “Restrictions Introduced by Polling Mode” on page 11-8

• “Controlling the Target Application” on page 11-12

• “Polling Mode Performance” on page 11-13

xPC Target Kernel Polling Mode
Polling mode for the xPC Target real-time kernel is designed to execute target
applications at sample times close to the limit of the hardware (CPU). Using
polling mode with high-speed and low-latency I/O boards and drivers allows
you to achieve smaller sample times for applications that you cannot achieve
using the interrupt mode of xPC Target.

Polling mode has two main applications:

• Control applications — Control applications of average model size and I/O
complexity that are executed at very small sample times (Ts = 5 to 50 µs)

• DSP applications — Sample-based DSP applications (mainly audio and
speech) of average model size and I/O complexity that are executed at very
high sample rates (Fs = 20 to 200 kHz)

Interrupt Mode
Interrupt mode is the default real-time execution mode for the xPC Target
kernel. This mode provides the greatest flexibility and is the mode you should
choose for any application that executes at the given base sample time without
overloading the CPU.

The scheduler ensures real-time single-tasking and multitasking execution of
single-rate or multirate systems, including asynchronous events (interrupts).

Polling Mode

11-3

Additionally, background tasks like host-target communication or updating
the target screen run in parallel with sample-time-based model tasks. This
allows you to interact with the target system while the target application is
executing in real time at high sample rates. This is made possible by an
interrupt-driven real-time scheduler that is responsible for executing the
various tasks according to their priority. The base sample time task can
interrupt any other task (larger sample time tasks or background tasks) and
execution of the interrupted tasks resumes as soon as the base sample time
task completes operation. This gives a quasi parallel execution scheme with
consideration to the priorities of the tasks.

Latencies Introduced by Interrupt Mode
Compared to other modes, interrupt mode has more advantages. The exception
is the disadvantage of introducing a constant overhead, or latency, that reduces
the minimal possible base sample time to a constant number. The overhead is
the sum of various factors related to the interrupt-driven execution scheme and
can be referred to as overall interrupt latency. The overall latency consists of
the following parts, assuming that the currently executing task is not
executing a critical section and has therefore not disabled any interrupt
sources:

• Interrupt controller latency — In a PC-compatible system the interrupt
controller is not part of the x86-compatible CPU but part of the CPU chip set.
The controller is accessed over the I/O-port address space, which introduces
a read or write latency of about 1 µs for each 8 bit/16 bit register access.
Because the CPU has to check for the interrupt line requesting an interrupt,
and the controller has to be reset after the interrupt has been serviced, a
latency of about 5 µs is introduced to properly handle the interrupt
controller.

• CPU hardware latency — Modern CPUs try to predict the next couple of
instructions, including branches, by the use of instruction pipelines. If an
interrupt occurs, the prediction fails and the pipeline has to be fully reloaded.
This process introduces an additional latency. Additionally, because of
interrupts, cache misses will occur.

• Interrupt handler entry and exit latency — Because an interrupt can stop
the currently executing task at any instruction and the interrupted task has
to resume proper execution when the interrupting task completes execution,
its state has to be saved and restored accordingly. This includes saving CPU
data and address registers, including the stack pointer. In the case that the

11 Interrupts Versus Polling

11-4

interrupted task executed floating-point unit (FPU) operations, the FPU
stack has to be saved as well (108 bytes on a Pentium CPU). This introduces
additionally latency.

• Interrupt handler content latency — If a background task has been
executing for a longer time, say in a loop, its needed data will be available in
the cache. But as soon as an interrupt occurs and the interrupt service
handler is executed, the data needed in the interrupt handler might no
longer be in the cache, causing the CPU to reload it from slower RAM. This
introduces additional latency. Generally, an interrupt reduces the optimal
execution speed or introduces latency, because of its unpredictable nature.

The xPC Target real-time kernel in interrupt mode is close to optimal for
executing code on a PC-compatible system. However, interrupt mode
introduces an overall latency of about 8 µs. This is a significant amount of time
when considering that a 1 GHz CPU can execute thousands of instructions
within 8 µs. This time is equivalent to a Simulink model containing a hundred
nontrivial blocks. Additionally, because lower priority tasks have to be serviced
as well, a certain amount of headroom (at least 5%) is necessary, which can
cause additional cache misses and therefore nonoptimal execution speed.

Polling Mode
Polling mode for the xPC Target real-time kernel does not have the 8 µs of
latency that interrupt mode does. This is because the kernel does not allow
interrupts at all, so the CPU can use this extra time for executing model code.

Polling mode is sometimes seen as a “primitive” or “brute force” real-time
execution scheme. Nevertheless, when a real-time application executes at a
given base sample time in interrupt mode and overloads the CPU, switching to
polling mode is often the only alternative to get the application to execute at
the required sample time.

Polling means that the kernel waits in an empty while loop until the time at
which the next model step has to be executed is reached. Then the next model
step is executed. At least a counter implemented in hardware has to be
accessible by the kernel in order to get a base reference for when the next model
step execution has to commence. The kernel polls this hardware counter. If this
hardware counter must be outside the CPU, e.g., in the chip set or even on an
ISA or PCI board, the counter value can only be retrieved by an I/O or memory
access cycle that again introduces latency. This latency usually eats up the

Polling Mode

11-5

freed-up time of polling mode. Fortunately, since the introduction of the
Pentium CPU family from Intel, the CPU is equipped with a 64 bit counter on
the CPU substrate itself, which commences counting at power-up time and
counts up driven by the actual clock rate of the CPU. Even a highly clocked
CPU is not likely to lead to an overflow of a 64 bit counter (2^64 * 1e-9 (1 GHz
CPU) = 584 years). The Pentium counter comes with the following features:

• Accurate measurements — Because the counter counts up with the CPU
clock rate (~1 GHz nowadays), the accuracy of time measurements even in
the microsecond range is very high, therefore leading to very small absolute
real-time errors.

• No overflow — Because the counter is 64 bits wide, in practical use overflow
does not occur, which makes a CPU time expensive overflow handler
unnecessary.

• No latency — The counter resides on the CPU. Reading the counter value
can be done within one CPU cycle, introducing almost no latency.

The polling execution scheme does not depend on any interrupt source to notify
the code to continue calculating the next model step. While this frees the CPU,
it means that any code that is part of the exclusively running polling loop is
executed in real time, even components, which have so far been executed in
background tasks. Because these background tasks are usually non-real-time
tasks and can use a lot of CPU time, do not execute them. This is the main
disadvantage of polling mode. To be efficient, only the target application’s
relevant parts should be executed. In the case of xPC Target, this is the code
that represents the Simulink model itself.

Therefore, host-target communication and target display updating are
disabled. Because polling mode reduces the features of xPC Target to a
minimum, you should choose it only as the last possible alternative to reach the
required base sample time for a given model. Therefore, ensure the following
before you consider polling mode:

• The model is optimal concerning execution speed — First, you should run
the model through the Simulink profiler to find any possible speed
optimizations using alternative blocks. If the model contains continuous
states, the discretization of these states will reduce model complexity
significantly, because a costly fixed-step integration algorithm can be
avoided. If continuous states cannot be discretized, you should use the

11 Interrupts Versus Polling

11-6

integration algorithm with the lowest order that still produces correct
numerical results.

• Use the fastest available computer hardware — Ensure that the CPU
with the highest clock rate available is used for a given PC form factor. For
the desktop form factor, this would mean a clock rate above 1 GHz; for a
mobile application, e.g., using the PC/104 form factor, this would mean a
clock rate above 400 MHz. Most of the time, you should use a desktop PC,
because the highest clocked CPUs are available for this form factor only.
Executing xpcbench at the MATLAB prompt gives an understanding about
the best performing CPUs for xPC Target applications.

• Use the lowest latency I/O hardware and drivers available — Many xPC
Target applications communicate with hardware through I/O hardware over
either an ISA or PCI bus. Because each register access to such I/O hardware
introduces a comparably high latency time (~1 µs), the use of the lowest
latency hardware/driver technology available is crucial.

• The base sample time is about 50 µs or less — The time additionally
assigned to model code execution in polling mode is only about 8 µs. If the
given base sample time of the target application exceeds about 50 µs, the
possible percentage gain is rather small. Other optimization technologies
might have a bigger impact on increasing performance.

Setting the Polling Mode
Polling mode is an alternative to the default interrupt mode of the real-time
kernel. This means that the kernel on the bootable 3.5 inch disk created by the
xpcexplr GUI allows running the target application in both modes without the
necessity to use another boot disk.

By default the target application executes in interrupt mode. To switch to
polling mode, you need to pass an option to the RTW system target file
command. The following example uses xpcosc.mdl.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box opens.

2 In the left pane, click the Real-Time Workshop node.

Polling Mode

11-7

3 In the TLC options edit field, specify the option

-axpcCPUClockPoll=CPUClockRateMHz

The assignment of the clock rate of the target PC’s CPU is necessary because
the Pentium’s on-chip counter used for polling mode counts up with the CPU
clock rate. If the clock rate is provided, the kernel can convert clock ticks to
seconds and vice versa. If an incorrect clock rate is provided, the target
application executes at an incorrect base sample time. You can find out
about the CPU clock rate of the target PC by rebooting the target PC and
checking the screen output during BIOS execution time. The BIOS usually
displays the CPU clock rate in MHz right after the target PC has been
powered up.

For example, if your target PC is a 1.2 GHz AMD Athlon, specify option

-axpcCPUClockPoll=1200

11 Interrupts Versus Polling

11-8

If you want to execute the target application in interrupt mode again, either
remove the option or assign a CPU clock rate of 0 to the option:

-axpcCPUClockPoll=0

If you make a change to the TLC options field, you need to rebuild the target
application for the change to take effect. Building the target application,
downloading it, and preparing it for a run then work exactly the same way as
they did with default interrupt mode.

After the download of the target application has succeeded, the target screen
displays the mode, and if polling mode is activated, it additionally displays the
defined CPU clock rate in MHz. This allows checking for the correct setting.

Restrictions Introduced by Polling Mode
As explained above, polling mode executes the Simulink-based target
application in real time exclusively. While the target application is executing
in polling mode, the background tasks, mainly the ones for host-target
communication and target screen updating, are inactive. This is because all
interrupts of the target PC are fully disabled during the execution of the target
application. On one hand this ensures the highest polling performance; on the
other hand, as a consequence the background tasks are not serviced.

Polling Mode

11-9

Here is a list of all relevant restrictions of polling mode, which are otherwise
available in the default interrupt mode.

Host-Target Communication Is Not Available During the Execution of the
Target Application
If the target application execution is started in polling mode, e.g., with

start(tg)

host-target communication is disabled throughout the entire run, or in other
words until the stop time is reached. Each attempt to issue a command like

tg

leads to a communication-related error message. Even the start(tg)
command to start polling mode execution returns such an error message,
because the host side does not receive the acknowledgment from the target
before timing out. The error message when executing start(tg) is not
avoidable. Subsequently, during the entire run, it is best not to issue any
target-related commands on the host, in order to avoid displaying the same
error message over and over again.

As a consequence, it is not possible to issue a stop(tg) command to stop the
target application execution from the host side. The target application has to
reach its set stop time for polling mode to be exited. You can use

tg.stoptime=x

before starting the execution, but once started the application executes until
the stop time is reached.

Nevertheless, there is a way to stop the execution interactively before reaching
the target application stop time. See “Controlling the Target Application” on
page 11-12.

If the target application execution finally reaches the stop time and polling
mode execution is stopped, host-target communication will begin functioning
again. However, the host-target communication link might be in a bad state. If
you still get communication error messages after polling mode execution stops,
type the command

xpctargetping

to reset the host-target communication link.

11 Interrupts Versus Polling

11-10

After the communication link is working again, type

tg

to resync the target object on the host side with the most current status of the
target application.

Target Screen Does Not Update During the Execution of the Target
Application
As with the restriction mentioned above, target screen updating is disabled
during the entire execution of the target application. Using the kernel with the
Enable target scope option enabled (see xpcexplr GUI) does not work. You
should therefore use the kernel with the Enable target scope property
disabled (text output only). The kernel enabled with text mode actually
provides more information when running in polling mode.

Session Time Does Not Advance During the Execution of the Target
Application
Because all interrupts are disabled during a run, the session time does not
advance. The session time right before and after the run is therefore the same.
This is a minor restriction and should not pose a problem.

The Only Rapid-Prototyping Feature Available Is Data Logging
Because host-target communication and target screen updating are disabled
during the entire run, most of the common rapid-prototyping features of xPC
Target are not available in polling mode. These are

• Parameter tuning — Neither through the command-line interface nor
through External mode

• Signal tracing through scope objects — Neither through scope objects of type
host (xpcscope GUI or scripts) or type target (scopes on the target screen if
property Enable target scope is enabled)

• Signal monitoring — You cannot run a GUI interface on the host PC using
an environment that depends on communication between the host and target
computers.

• Applications using the xPC Target API

• The Internet browser interface

• Other utilities like xpctargetspy

Polling Mode

11-11

The only rapid-prototyping feature available is signal logging, because the
acquisition of signal data runs independently from the host, and logged data is
retrieved only after the execution is stopped. Nevertheless, being able to log
data allows gathering good enough information about the behavior of the target
application. Signal logging becomes a very important feature in polling mode.

Multirate Simulink Models Cannot Be Executed in Multitasking Mode on
the Target PC
Because of the polling mode execution scheme, executing Simulink-based
target applications in multitasking mode is not possible. The modeling of
function-call subsystems to handle asynchronous events (interrupts) is not
possible either. This can be a hard restriction, especially for multirate systems.
Multirate systems can be executed in single-tasking mode, but because of its
sequential execution scheme for all subsystems with different rates, the CPU
will most likely overload for the given base sample time. As an important
consequence, polling mode is only a feasible alternative to interrupt mode if the
model has a single rate or if it can be converted to a single-rate model. A
single-rate model implies continuous states only, discrete states only, or mixed
continuous and discrete states, if the continuous and discrete subsystems have
the same rate. Use the Format -> Sample time color feature of Simulink to
check for the single rate requirement. Additionally, set the tasking mode
property in the Simulation menu Configuration Parameters -> Solver pane
to SingleTasking to avoid a possible switch to multitasking mode. For more
information on single-tasking mode compared to multitasking mode, see the
Real-Time Workshop User’s documentation.

I/O Drivers Using Kernel Timing Information Cannot Be Used Within a
Model
Some xPC Target drivers use timing information exported from the kernel in
order to run properly, for example, for the detection of timeouts. Because the
standard timing engine of the real-time kernel is not running during the entire
target application execution in polling mode, timing information passed back
to the drivers is incorrect. Therefore, you cannot use drivers importing the
header file time_xpcimport.h. This is a current restriction only. In a future
version of polling mode, all drivers will make use of the Pentium counter for
getting timing information instead.

11 Interrupts Versus Polling

11-12

Controlling the Target Application
As mentioned, there is no way to interact with the running target application
in polling mode. This is especially restrictive for the case of stopping the model
execution before the application has reached the stop time that was defined
before the execution started. Because polling mode tries to be as optimal as
possible, any rapid-prototyping feature except signal logging is disabled. But
because I/O driver blocks added to the model are fully functional, you can use
I/O drivers to get to a minimal level of interactivity.

Stopping a target application using polling mode — You can use a
low-latency digital input driver for the digital PCI board in your model, which
reads in a single digital TTL signal. The signal is TTL low unless the model
execution should be stopped, for which the signal changes to TTL high. You can
connect the output port of the digital input driver block to the input port of a
Stop simulation block, found in the standard Simulink block library. This stops
the execution of the target application, depending on the state of the digital
input signal. You can either use a hardware switch connected to the
board-specific input pin or you can generate the signal by other means. For
example, you could use another digital I/O board in the host machine and
connect the two boards (one in the host, the other in the target) over a couple
of wires. You could then use MathWorks Data Acquisition Toolbox to drive the
corresponding TTL output pin of the host board to stop the target application
execution from within MATLAB.

Generally, you can use the same software/hardware setup for passing other
information back and forth during run time of the target application. It is
important to understand that any additional feature beside signal logging has
to be implemented at the model level, and it is therefore the user’s
responsibility to optimize for the minimal additional latency the feature
introduces. For example, being able to interactively stop the target application
execution is paid for by the introduction of an additional 1 µs latency necessary
to read the digital signal over the digital I/O board. However, if you need to
read digital inputs from the plant hardware anyway, and not all lines are used,
you get the feature for free.

Polling Mode

11-13

Polling Mode Performance
This is preliminary information. All benchmarks have been executed using a
1 GHz AMD Athlon machine, which is the same machine that is at the top of
the list displayed by xpcbench.

The minimum achievable base sample time for model Minimal (type help
xpcbench in the MATLAB Command Window for further information) is 1 µs
with signal logging disabled and 2 µs with signal logging enabled.

The minimum achievable base sample time for model f14 (type help xpcbench
for further information in the MATLAB window) using an ode4 fixed-step
integration algorithm is 4 µs with signal logging disabled and 5 µs with signal
logging enabled.

A more realistic model, which has been benchmarked, is a second-order
continuous controller accessing real hardware over two16 bit A/D channels and
two 16 bit D/A channels. The analog I/O board used is the fast and low-latency
PMC-ADADIO from http://www.generalstandards.com, which is used in
conjunction with some recently developed and heavily optimized (lowest
latency) xPC Target drivers for this particular board. The minimum achievable
base sample time for this model using an ode4 fixed-step integration algorithm
is 11 µs with signal logging disabled and 12 µs with signal logging enabled.
This equals a sample rate of almost 100 kHz. The achievable sample time for
the same model in interrupt mode is ~28 µs or a sample rate of ~33 kHz. For
this application, the overall performance increase using polling mode is almost
a factor of 3.

11 Interrupts Versus Polling

11-14

12
xPC Target and Fortran

xPC Target supports the incorporation of Fortran code into Simulink models. This chapter describes
the following:

Introduction (p. 12-2) Use Simulink S-functions to incorporate Fortran code
into xPC Target.

Step-by-Step Example of Fortran and
xPC Target (p. 12-5)

Follow the example to build your own xPC Target
application with Fortran code.

12 xPC Target and Fortran

12-2

Introduction
xPC Target supports Fortran in Simulink models with S-functions. (See
“Creating Fortran S-Functions” in the Writing S-Functions documentation for
a description of how to incorporate Fortran code into Simulink models.) This
chapter describes how to incorporate Fortran into a Simulink model for xPC
Target.

This section has the following topics:

• “Simulink Demos Directory” on page 12-2

• “Prerequisites” on page 12-3

• “Steps to Incorporate Fortran in Simulink for xPC Target” on page 12-3

The example below uses one of the provided Fortran demo files, Atmosphere
model.

Simulink Demos Directory
The Simulink demos directory contains a tutorial and description on how to
incorporate Fortran code into a Simulink model using S-functions. To access
the tutorial and description,

1 In the MATLAB Command Window, type

demos

A list of MATLAB products appears on the left side of the window.

2 From the left side of the window, select Simulink, then Features.

A list of Simulink examples appears on the right side of the window.

3 Click Custom Code and Hand Coded Blocks: M, C/C++, Fortran, etc.).

The associated Simulink demos page opens.

4 Click Open this model.

A library of S-function examples is displayed.

Introduction

12-3

5 Double-click the Fortran S-functions block.

A library of Fortran S-functions and associated templates appears. This
library also contains a README block. This file contains the same
information as that contained in “Creating Fortran S-Functions” in the
Writing S-Functions documentation. In that chapter, the sections “Creating
Level 2 Fortran S-Functions” and “Porting Legacy Code” are most applicable
to xPC Target.

Prerequisites
You must have the following to use Fortran for xPC Target applications:

• xPC Target Version 1.3 or later

• Compaq Visual Fortran Compiler Version 6.5 or later

Steps to Incorporate Fortran in Simulink for xPC
Target
This section lists the general steps to incorporate Fortran code into an xPC
Target application. Detailed commands follow in the accompanying examples:

1 Using the Fortran compiler, compile the Fortran code (subroutines (*.f)).
You will need to specify particular compiler options.

2 Write a C-MEX wrapper S-function for Simulink. This wrapper S-function
calls one or more of the Fortran subroutines in the compiled Fortran object
code from step 1.

3 Use the mex function to compile this C-MEX S-function using a Visual C/C++
compiler. Define several Fortran run-time libraries to be linked in.

This step creates the Simulink DLL.

4 Run a simulation C-MEX file with Simulink to validate the compiled
Fortran code and wrapper S-function.

5 Copy relevant Fortran run-time libraries to the application build directory
for the xPC Target application build.

12 xPC Target and Fortran

12-4

6 Define the Fortran libraries, and the Fortran object files from step 1, in the
Real-Time Workshop dialog of the Simulink model. You must define these
libraries and files as additional components to be linked in when the xPC
Target application link stage takes place.

7 Initiate the xPC Target specific Real-Time Workshop build procedure for the
demo model. Real-Time Workshop builds and downloads the xPC Target
onto the target PC.

Step-by-Step Example of Fortran and xPC Target

12-5

Step-by-Step Example of Fortran and xPC Target
This example uses the demo Atmosphere model that comes with Simulink. The
following procedures require you to know how to write Fortran code
appropriate for Simulink and xPC Target. See “Creating Fortran S-Functions”
in the Writing S-Functions documentation for these details.

This section includes the following topics:

• “Creating an xPC Target Atmosphere Model for Fortran” on page 12-5

• “Compiling Fortran Files” on page 12-7

• “Creating a C-MEX Wrapper S-Function” on page 12-9

• “Compiling and Linking the Wrapper S-Function” on page 12-9

• “Validating the Fortran Code and Wrapper S-Function” on page 12-10

• “Preparing the Model for the xPC Target Application Build” on page 12-11

• “Building and Running the xPC Target Application” on page 12-13

Before you start, you should create an xPC Target Simulink model for the
Atmosphere model. See “Creating an xPC Target Atmosphere Model for
Fortran” on page 12-5.

Creating an xPC Target Atmosphere Model for
Fortran
To create an xPC Target Atmosphere model for Fortran, you need to add an
xPC Target Scope block to the sfcndemo_atmos model. Perform this procedure
if you do not already have an xPC Target Atmosphere model for Fortran.

1 From the MATLAB window, change directory to the working directory, for
example, xpc_fortran_test.

2 Type

sfcndemo_atmos

The sfcndemo_atmos model is displayed.

3 Add an xPC Target Scope block of type Target.

12 xPC Target and Fortran

12-6

4 Connect this Scope block to the Tamb, K signal.

The model sfcndemo_atmos.mdl should look like the figure shown.

5 Double-click the target Scope block.

6 From the Scope mode parameter, choose Graphical rolling.

7 For the Number of samples parameter, enter 240.

8 Click Apply, then OK.

9 Double-click the Sine Wave block.

10 Click Apply, then OK.

11 For the Sample time parameter, enter 0.05.

12 Click Apply, then OK.

13 From the File menu, click Save as. Browse to your current working
directory, for example, xpc_fortran_test. Enter a filename. For example,
enter fortran_atmos_xpc and then click Save.

Your next task is to compile Fortran code. See “Compiling Fortran Files” on
page 12-7.

Step-by-Step Example of Fortran and xPC Target

12-7

Compiling Fortran Files
This section describes the ways that you can compile Fortran code for xPC
Target. Choose the procedure most convenient to your needs:

• DOS command window

• Microsoft Developer Studio IDE

Before you start,

1 Change directory to <MATLAB root>\simulink\src.

2 Copy the file sfun_atmos_sub.f into your Fortran working directory, for
example, xpc_fortran_test.

This is the sample Fortran code that implements a subroutine for the
Atmosphere model.

Your next task is to compile the Fortran code for xPC Target. See “DOS
Command Line” on page 12-7 or “Microsoft Developer Studio IDE” on
page 12-8.

DOS Command Line
This section describes the procedure for compiling Fortran files from a DOS
command window:

1 Ensure that the system environment has the correct path and variable
settings so that you can start the Fortran compiler from the DOS command
prompt.

2 From the DOS prompt, change directory to the working directory, for
example, xpc_fortran_test.

12 xPC Target and Fortran

12-8

3 Type

fl32 -c /iface:cref -G5 -Ox -Zi sfun_atmos_sub.f

This command generates the sfun_atmos_sub.obj file.

Of these options, -c and /iface:cref are the most important. The
remaining options are typical compiler optimization and debug options.

The -c option ensures that the compiler compiles only the file and does not
link it into an executable.

The /iface:cref option defines the interface as C, making direct calls of the
subroutines from C code possible.

Your next task is to create a wrapper S-function. See “Creating a C-MEX
Wrapper S-Function” on page 12-9.

Microsoft Developer Studio IDE
This section describes how to use Microsoft Developer Studio IDE to compile
Fortran code.

1 Define a Fortran project in the Microsoft Developer Studio IDE. This
procedure lets the IDE handle the compilation process.

2 Specify at least the /iface:cref and -c options for the developer studio.

The final outcome should be the sfun_atmos_sub.obj file.

For more information on the Microsoft Developer Studio IDE, refer to the
Fortran compiler documentation.

Your next task is to create a C-MEX wrapper S-function. See “Creating a
C-MEX Wrapper S-Function” on page 12-9.

Step-by-Step Example of Fortran and xPC Target

12-9

Creating a C-MEX Wrapper S-Function
This section assumes that you have compiled your Fortran code. See
“Compiling Fortran Files” on page 12-7.

Write the wrapper S-function for sfun_atmos_sub.f. A wrapper S-function is
code that incorporates existing Fortran code into a Simulink S-Function block.
For details on writing such wrapper functions, refer to the Writing S-Functions
Simulink documentation.

The wrapper S-function calls the Fortran subroutine Atmos with the
appropriate calling convention: atmos_. (Refer to “Creating Fortran
S-Functions” in the Writing S-Functions documentation for further
information about calling conventions.) The wrapper S-function file for this
example is called sfun_atmos.c.

1 Change directory to <MATLAB root>\simulink\src.

2 Copy the file sfun_atmos.c into your Fortran working directory, for
example, xpc_fortran_test.

Your next task is to compile and link the wrapper S-function. See “Compiling
and Linking the Wrapper S-Function” on page 12-9.

Compiling and Linking the Wrapper S-Function
Create (compile and link) a DLL (C-MEX DLL) from the sfun_atmos.c file. Use
the mex command with a C/C++ compiler such as Microsoft Visual C/C++
Version 6.0.

Before you start, copy the following run-time library files from the Fortran
compiler installer directory, such as C:\Program Files\Microsoft Visual
Studio\DF98\lib, into the working directory, xpc_fortran_test. Copying
these files simplifies the build process.

• dfor.lib
• dformd.lib
• dfconsol.lib
• dfport.lib

This section assumes that you have created a C_MEX wrapper S-function. See
“Creating a C-MEX Wrapper S-Function” on page 12-9.

12 xPC Target and Fortran

12-10

Invoking the mex command includes the following steps:

1 Compile the wrapper C file sfun_atmos.c. Be sure to link in the following:

- Compiled wrapper file: sfun_atmos.obj

- Compiled Fortran code: sfun_atmos_sub.obj

- Necessary Fortran run-time libraries to resolve external function
references and the Fortran run-time environment

2 Type

mex -v LINKFLAGS#"$LINKFLAGS dformd.lib dfconsol.lib
dfport.lib" sfun_atmos.c sfun_atmos_sub.obj

Ensure that this whole command is all on one line. This command compiles
and links the sfun_atmos_sub.c file. It creates the sfun_atmos.dll file in
the same directory.

Note If this command generates a conflict error with libc, you might need to
add the option /NODEFAULTLIB:libc.lib to the command. For example, mex
-v /NODEFAULTLIB:libc.lib LINKFLAGS#"$LINKFLAGS dformd.lib
dfconsol.lib dfport.lib" sfun_atmos.c sfun_atmos_sub.obj.

Your next task is to validate the Fortran code and wrapper S-function. See
“Validating the Fortran Code and Wrapper S-Function” on page 12-10.

Validating the Fortran Code and Wrapper
S-Function
Validate the generated DLL, sfun_atmos.dll. Bind the S-function DLL to an
S-function block found in the Simulink block library. You can mask the
S-function block like any other S-function block to give it a specific dialog box.

This section assumes that you have compiled and linked a wrapper S-function.
See “Compiling and Linking the Wrapper S-Function” on page 12-9.

The Atmosphere model example has a Simulink model associated with it:

Step-by-Step Example of Fortran and xPC Target

12-11

1 At the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model. This
model includes the correct S-function block that is bound to
sfun_atmos.dll.

2 Select the Simulation menu Start option to simulate the model.

3 Examine the behavior of the Atmosphere model by looking at the signals
traced by the Scope block.

Your next task is to prepare the model to build an xPC Target application. See
“Preparing the Model for the xPC Target Application Build” on page 12-11.

Preparing the Model for the xPC Target Application
Build
Before you build the Atmosphere model for xPC Target, define the following
build dependencies:

• The build procedure has access to sfun_atmos.sub.obj for the link stage.

• The build procedure has access to the Fortran run-time libraries (see
“Compiling and Linking the Wrapper S-Function” on page 12-9) for the link
stage.

This section assumes that you have validated the Fortran code and wrapper
S-function (see “Validating the Fortran Code and Wrapper S-Function” on
page 12-10).

1 At the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.

2 In the Simulink model, from the Simulation menu, click Configuration
Parameters.

The Configuration Parameters dialog box appears.

12 xPC Target and Fortran

12-12

3 In the left pane, click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

4 In the Target selection section, click the Browse button at the RTW system
target file list.

5 Click xpctarget.tlc.

6 In the Make command field, replace make_rtw with the following string:

make_rtw S_FUNCTIONS_LIB="..\sfun_atmos_sub.obj ..\dfor.lib
..\dfconsol.lib ..\dfport.lib"

Ensure that this whole command is all on one line.

7 Press Apply.

8 Press OK.

9 From the File menu, click Save.

This command requires that the application build directory be the current
directory (one level below the working directory, xpc_fortran_test). Because
of this, all additional dependency designations must start with ..\.

Specify all Fortran object files if your model (S-Function blocks) depends on
more than one file. For this example, you specify the run-time libraries only
once.

Your next task is to build and run the xPC Target application. See “Building
and Running the xPC Target Application” on page 12-13.

Step-by-Step Example of Fortran and xPC Target

12-13

Building and Running the xPC Target Application
This section assumes that you have prepared the model to build an xPC Target
application. See “Preparing the Model for the xPC Target Application Build” on
page 12-11.

Build and run the xPC Target application as usual. Be sure that you have
defined Microsoft Visual C/C++ as the xPC Target C compiler using xpcexplr.

After the build procedure succeeds, xPC Target automatically downloads the
application to the target PC. The Atmosphere model already contains an xPC
Target Scope block. This allows you to verify the behavior of the model. You will
be able to compare the signals displayed on the target screen with the signals
obtained earlier by the Simulink simulation run (see “Validating the Fortran
Code and Wrapper S-Function” on page 12-10).

12 xPC Target and Fortran

12-14

13
Troubleshooting

This chapter describes guidelines, hints, and tips for issues you might encounter while using xPC
Target. Refer to The MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP) for specific troubleshooting solutions. The xPC
Target documentation is also available from this site. This chapter includes the following sections:

General Troubleshooting Hints and
Tips (p. 13-2)

General xPC Target troubleshooting hints and tips

Installation, Configuration, and Test
Troubleshooting (p. 13-6)

General xPC Target troubleshooting guidelines for
installation, configuration, and testing

Advanced Troubleshooting (p. 13-12) Less common, more advanced xPC Target troubleshooting
guidelines

13 Troubleshooting

13-2

General Troubleshooting Hints and Tips
This section lists general troubleshooting tips that you can use as a first
attempt to resolve your issues. This section has the following topics:

• “Is There Communication Between Your PCs?” on page 13-3

• “xPC Target and the Target PC BIOS” on page 13-4

• “What PCI Boards Are Installed on Your System?” on page 13-4

• “How to Get Updated xPC Target Releases” on page 13-4

• “Are You Working with a New xPC Target Release?” on page 13-5

• “What Does the Target PC Display?” on page 13-5

• “Refer to The MathWorks Support Web Site” on page 13-5

• “Refer to the Documentation” on page 13-5

Is Your Host PC MATLAB Halted?
If your host PC MATLAB halts while creating an xPC Target boot disk,

• Use another formatted disk to create the xPC Target boot disk.

• If your host PC has anti-virus software, it might conflict with MATLAB.
Disable the software while using MATLAB.

• Verify that the host PC 3.5 inch disk drive is accessible. If it is not accessible,
replace the 3.5 inch disk drive.

Is Your Target PC Unable to Boot?
If your target PC cannot boot with the xPC target boot disk,

• Use another formatted disk and create a new xPC Target boot disk.

• Verify that the current properties on the xPC Target boot disk correspond to
the environment variables of xPC Target Explorer.

• Verify that the xPC Target boot disk contains files like the following:
- BOOTSECT.RTT
- checksum.dat
- XPCTGB1.RTA

Note that the name of the last file varies depending on the communication
method.

General Troubleshooting Hints and Tips

13-3

• If any of these files are not present, reinstall xPC Target. This should fix any
corrupted files from the previous (initial) installation.

• If problems persist, see “Troubleshooting the Boot Process” in Chapter 3 of
the xPC Target Getting Started documentation.

• If you still cannot boot the target PC, you might need to replace the target
PC 3.5 inch disk drive.

Is the Target PC Halted?
If your target PC displays a System Halted message while booting,

• Verify that the TcpIp target driver parameter is configured correctly in xPC
Target Explorer, recreate the xPC Target boot disk, and use that new disk to
boot the target PC.

• Ensure that xPC Target supports your target PC hardware. Be sure to verify
the network communication hardware.

Is There Communication Between Your PCs?
If you are using xPC Target in a host/target PC client/server setup, use the
following MATLAB commands from the host PC:

• xpctargetping
• xpctest

The xpctargetping command performs a basic communication check between
the host and target PC. This command only returns success if the xPC Target
kernel is loaded and is running and the communication between host and
target PC is working properly. Use this command for a quick check of the host
PC/target PC communications.

The xpctest command performs a series of tests on your xPC Target system.
These tests range from performing a basic communication check to building
and running target applications. At the end of each test, the command returns
an OK or failure message. If the test is inappropriate for your setup, the
command returns a SKIPPED message. Use this command for a thorough check
of your xPC Target installation.

Communication errors might also occur in the following instances:

13 Troubleshooting

13-4

• The target PC is running an old xPC Target boot disk that is not in sync with
the xPC Target release installed on the host PC. Create a new boot disk for
each new release of xPC Target.

• The communication between the host PC and target PC is TCP/IP, set the
host PC network interface card (NIC) card to half-duplex mode. Do not set
the mode to full-duplex mode.

xPC Target and the Target PC BIOS
The settings of your target PC BIOS will affect your xPC Target. As a general
rule, ensure that the host and target PC BIOS have at least the following
settings:

• RS-232 communication — If you are using RS-232 communications, ensure
that COM ports are enabled for both host and target PCs. Also, ensure
through the BIOS that COM1 has a base address of 3F8 and an IRQ of 4.
COM2 must have a base address of 2F8 and an IRQ of 3. These are the
default base address values. Do not change these values.

• Plug-and-Play (PnP) operating system — Disable this feature to ensure that
the PCI BIOS sets up the plugged-in PCI cards properly. The xPC Target
kernel is not a PnP operating system; you must ensure that this feature is
disabled or PCI devices will not work on xPC Target.

• Power Saving modes — Disable all power saving modes.

• USB Support — Disable all USB support, including general USB and USB
keyboard support. Failure to do this will cause occasional long task execution
times (TET).

• PCI boards — Do not detect PCI boards with class code 0xff in target PC
BIOS. Set to Off to enable the BIOS to detect and configure all boards.

What PCI Boards Are Installed on Your System?
Use the getxpcpci MATLAB command to determine what PCI boards are
installed in your xPC Target system. For example,

getxpcpci('all')

How to Get Updated xPC Target Releases

1 Start Simulink -> xPC Target -> Product News (Web).

General Troubleshooting Hints and Tips

13-5

2 Look for the section on downloading software and select the version you
want.

Are You Working with a New xPC Target Release?
If you are working with a new xPC Target release, either one you download
from The MathWorks Web site (http://www.mathworks.com/web_downloads/)
or one you install from a CD, you must do the following:

• At the MATLAB Command Window, invoke xpcexplr.

• Recreate your xPC Target environment (see “Serial Communication” or
“Network Communication” in Chapter 2 of the Getting Started with xPC
Target documentation).

• Create a new boot disk. Use a new 3.5 inch disk.

• Rebuild target applications on that new xPC Target release.

What Does the Target PC Display?
From the host PC, you can view the target PC monitor with the MATLAB
xpctargetspy command.

Refer to The MathWorks Support Web Site
This chapter contains general xPC Target troubleshooting tips. Refer to the
MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP) for more specific
troubleshooting solutions. The xPC Target documentation is also available
from this site.

Refer to the Documentation
The xPC Target documentation has hints and tips embedded throughout. You
should install the Help and PDF documentation to provide easy reference:

• The xPC Target Help documentation is available for installation when you
install the xPC Target product either from the CD or Web download.

• The PDF documentation is available for installation from
http://www.mathworks.com.

13 Troubleshooting

13-6

Installation, Configuration, and Test Troubleshooting
The following are some issues you might encounter with xPC Target when
trying to set up.

Troubleshooting xpctest Results
This section assumes that you have read the “Testing and Troubleshooting the
Installation” section of the Getting Started with xPC Target documentation.

xpctest: Test 1 Fails. First, perform the procedure described in the “Test 1, Ping
Target System Standard Ping” section of the Getting Started with xPC Target
documentation.

Note You can ignore this section if you are using a serial connection. Test 1 is
skipped for serial connections.

If you are using a TCP/IP connection and need more help with Test 1, check the
following:

• Be sure to use a supported Ethernet card on the target PC. The following
Ethernet controllers are supported:

- Intel 82559 based cards

- Intel 82559ER based cards

- Intel 82550 based cards

- NE2000 based cards

- AMD lance 79C971(RTLANCE) based cards

- SMC91C9X based cards

See “Ethernet Chips Supported by xPC Target” in Chapter 2 of the Getting
Started with xPC Target documentation for further details.

• Verify that your hardware is operating correctly. For example, check for
faulty network cables and other hardware.

• If you run xpctest from an UNC network directory, such as
\\Server\user\work, a workaround is to change the current MATLAB
directory to a local directory and run the test again.

Installation, Configuration, and Test Troubleshooting

13-7

xpctest: Test 2 Fails. First, follow the procedure described in the “Test 2, Ping
Target System xPC Target Ping” section of the Getting Started with xPC
Target documentation.

If you need more help with Test 2, check the following:

• Use the PC MATLAB command xpcexplr to check the environment
variables, in particular Target PC IP address. If Test 1 passes but Test 2
fails, you might have entered an incorrect IP address.

• If you have a TCP/IP connection, make sure you are using a supported
Ethernet card (see “xpctest: Test 1 Fails” on page 13-6).

• For RS-232 connection,

- Use a null modem cable (see the “Hardware for Serial Communication”
section of the Getting Started with xPC Target documentation). If you do
not use a null modem cable for an RS-232 connection, communication
between the host and target PCs will fail. A null modem cable is shipped
with xPC Target.

- If you do have a null modem cable, check the COM ports on the host and
target PC. For example, ensure that the ports are enabled, you have
connected the appropriate COM port, and the COM port matches that
specified for xpcexplr.

- Ensure that the COM ports on the host and target PCs are enabled in the
BIOS. If they are disabled, Test 2 fails.

xpctest: Test 3 Fails. First, follow the procedure described in the “Test 3, Reboot
Target Using Direct Call” section of the Getting Started with xPC Target
documentation.

If you need more help with Test 3, check the following:

• Did you get the following error?

- ReadFile Error: 6

Older xPC Target releases might receive this error. This message might
occur if the host PC initiates communication with the target PC while the
target PC is rebooting, but the kernel on the target PC has not yet loaded. As
a workaround, run xpctest with the noreboot option. For example,

13 Troubleshooting

13-8

xpctest noreboot

This command runs the test without trying to reboot the target PC. It
displays the following message:

Test 3, Reboot target using direct call: ... SKIPPED

• If you directly or indirectly modify the xpcosc demo mode that is supplied
with xPC Target, Test 3 is likely to fail. To pass this test, restore the original
xpcosc demo model using one of the following methods:

- (Preferred) Download a new copy of the model from the MathWorks FTP
site (ftp://ftp.mathworks.com/pub/tech-support/xpcosc_model/).
Overwrite the old xpcosc model with this new one in the directory
matlabroot\toolbox\rtw\targets\xpc\xpcdemos

- Recreate the original model.

Note Do not modify any of the files that are installed with xPC Target. If you
want to modify one of these files, copy the file and modify the copy.

xpctest: Test 4 Fails. First, follow the procedure described in the “Test 4, Build and
Download Application” section of the Getting Started with xPC Target
documentation.

If you need more help with Test 4, check the following:

• Verify that a supported compiler is being used.

• If the communication between the host PC and target PC is TCP/IP, set the
host PC network interface card (NIC) card to half-duplex mode. Do not set
the mode to full-duplex mode.

• Verify the specified path to the supported compiler. You need only the root
path to the compiler, not the full path. If you incorrectly specific a path, you
might get the following error:

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c (SetupForVisual)
Invalid DEVSTUDIO path specified

or the following error:

Error executing build command: Error using ==> make_rtw

Installation, Configuration, and Test Troubleshooting

13-9

Error using ==> rtw_c
Errors encountered while building model "xpcosc"

with the following MATLAB Command Window error:

NMAKE: fatal error U1064: MAKEFILE not found and no target
specified
Stop.

To correct these errors,

1 Ensure that your compiler is properly installed. For example, all Microsoft
Visual compiler components must be in the Microsoft Visual Studio folder
after installation.

2 At the MATLAB prompt, type xpcexplr. For example,

xpcexplr

3 In the Select C compiler field, select the appropriate compiler type
(VisualC or Watcom).

4 In the Compiler Path field, enter the root path to the compiler. For example

d:\applications\microsoft visual studio

Do not add a terminating backslash (\) at the end of the path.

xpctest: Test 5 Fails. This error occurs only when the environment variable
settings are out of date.

To correct this, perform the following:

1 At the MATLAB prompt, type xpcexplr. For example,

xpcexplr

2 Inspect the environment variables.

3 If you have xPC Target Embedded Option installed, ensure that in the xPC
Target boot mode section, you have selected the BootFloppy option.

4 Make necessary changes.

5 Recreate the boot disk. Perform the following:

13 Troubleshooting

13-10

a Insert a formatted floppy disk.

b Click BootDisk.

6 Reboot the target PC.

7 Rerun xpctest.

If this procedure does not resolve the issue, perform the following:

1 At the MATLAB command line, type updatexpcenv. For example,

updatexpcenv

2 Recreate the boot disk. Perform the following:

a Insert a formatted floppy disk.

b At the MATLAB window, type

xpcbootdisk

3 Reboot the target PC.

4 Rerun xpctest.

xpctest: Test 6 Fails. This test runs the basic target object constructor, xpc. This
error rarely occurs without an earlier test failing.

To correct this, perform the following,

1 At the MATLAB command line, refer to and read the xpc reference page. For
example,

help xpc

2 Follow any guidance that might be helpful.

3 Reboot the target PC.

4 Rerun and check the results of earlier tests and make the necessary
corrections.

Installation, Configuration, and Test Troubleshooting

13-11

xpctest: Test 7 Fails. This test executes a target application (xpcosc) on the target
PC. This test will fail if you change the xpcosc model start time to something
other than 0, such as 0.001. This change causes the test, and MATLAB itself,
to halt. To correct this, set the xpcosc model start time back to 0.

xpctest: Test 8 Fails. This test executes a target application (xpcosc) on the target
PC. This test might fail if you change the xpcosc model (for example, if you
remove the outport block).

To correct this, perform one of the following:

• Set the model back to the original configuration.

• Download a new copy of the model from the MathWorks FTP site
(ftp://ftp.mathworks.com/pub/tech-support/xpcosc_model/).

• Overwrite the old xpcosc model with this new one in the directory

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

Other issues might also cause this test to fail. If you still need more help, check
the following:

• There is a known issue with an earlier version of xPC Target (1.3). It might
occur when you run xpctest two immediately consecutive times. See the
known issue and solution documented in:
http://www.mathworks.com/support/solutions/data/27889.html.

• If you are running a new xPC Target release, be sure that you have a new
boot disk for this release. See “Are You Working with a New xPC Target
Release?” on page 13-5.

• If you are installing another version of xPC Target on top of an existing
version, check the version number of the current installation. At the
MATLAB command line, type xpclib. The version number appears at the
bottom of the Target Simulink block library pop-up window. If the version
number is not the one to which you want to upgrade, reinstall xPC Target.

13 Troubleshooting

13-12

Advanced Troubleshooting
The following are some advanced issues or questions you might have with xPC
Target. This section has the following topics:

• “General I/O Troubleshooting Guidelines” on page 13-12

• “xPC Target and BIOS” on page 13-13

• “Attempts to Run Any Model Cause CPU Overload Messages on Target PC”
on page 13-13

• “Building a Model That Contains a CAN Board” on page 13-14

• “Obtaining PCI Board Slot and Bus Information” on page 13-15

• “Why Does xPC Target Lose Connection with the Host PC When
Downloading Some Models?” on page 13-16

• “Why Is My Requested xPC Target Sample Time Different from the
Measured Sample Time?” on page 13-18

• “Why Did I Get Error -10: Invalid File ID on the Target PC?” on page 13-20

• “Can I Write Custom xPC Target Device Drivers?” on page 13-20

• “Can I Create a Stand-Alone xPC Target Application to Interact with a
Target Application?” on page 13-21

• “Can Signal Outputs from Virtual Blocks Be Tagged?” on page 13-21

• “Why Has the Stop Time Changed?” on page 13-21

• “Why Do I Get File System Disabled Error?” on page 13-22

• “How can I Diagnose Network Problems with xPC Target?” on page 13-22

General I/O Troubleshooting Guidelines
If you encounter issues using the xPC Target I/O drivers,

• Ensure that you have properly configured the driver.

• Ensure that you are using the latest version of xPC Target.

• Test the hardware using the available diagnostic software included with the
I/O board from the manufacturer.

• Try a different target PC to verify the behavior.

• Report the issue to The MathWorks Support at
(http://www.mathworks.com/support/contact_us/index.html).

Advanced Troubleshooting

13-13

xPC Target and BIOS
The settings of your host or target PC BIOS will affect your xPC Target results.
See “xPC Target and the Target PC BIOS” on page 13-4 for recommended
settings. Incorrect BIOS settings can cause questions like the following:

• getxpcpci can detect PCI boards, but autosearch -l cannot

• Why can my stand-alone application run on some target PCs, but not others?

• Why is my target PC crashing while downloading applications?

• Why is my target PC104 hanging on boot up?

• Why is my boot time slow?

• Why is my software not running in real time?

Attempts to Run Any Model Cause CPU Overload Messages on Target PC
This error might occur if you have

• A model sample time that is too small (see “Dealing with Small Model
Sample Times” on page 13-13)

• Enabled Advanced Power Management, USB ports in the target PC BIOS, or
Plug and Play (PnP) (see “Target PC BIOS” on page 13-14)

Dealing with Small Model Sample Times. If the model has too small a sample time, a
CPU overload can occur. This error indicates that to run the target application,
the model sample time property requires more CPU time than the sample time
for the model (Fixed step size property) allows.

When this error occurs, the target object property CPUoverload changes from
none to detected. To correct the issue, perform one of the following:

• Change the model Fixed step size property to a larger value and rebuild
the model. Use the Solver node in the Simulink model Configuration
Parameters dialog.

• Run the target application on a target PC with a faster processor.

13 Troubleshooting

13-14

Target PC BIOS. This section assumes that the target PC has BIOS running on it.
A CPU overload error can occur if any of the following are enabled:

• Advanced Power Management

• USB ports

• Plug and Play (PnP)

Enabling any of these properties causes non-real-time behavior from the target
PC. You must disable these BIOS properties for the target PC to run the target
application properly in real time.

More Help. If the preceding procedures do not solve your issue,

• Run xpcbench at the MATLAB command line. For example,
xpcbench('this')

This program accurately evaluates your system. The results indicate the
smallest base sample time that an xPC Target application can achieve on
your system. For more information on xpcbench, type help xpcbench at the
MATLAB prompt or
http://www.mathworks.com/support/product/XP/productnews/benchmar
ks.html.

• Set up the xPC Target environment with a different target PC. Compare the
result with the original target PC.

Building a Model That Contains a CAN Board
If you want to use the target PC in a CAN network, you must remember to set
up the xPC Target environment for a CAN library. If you do not configure a
CAN library into the system, you will get CAN errors when building the target
application.

To correct the issue,

1 At the MATLAB command line, type xpcexplr. For example,

xpcexplr

The xPC Target Explorer window is displayed.

2 At the CAN Library parameter, select the appropriate CAN library for the
board in your system.

Advanced Troubleshooting

13-15

3 Create a new boot disk.

4 Reboot the target PC with the new boot disk.

5 Rerun xpctest.

6 To update the model with the new information, press Ctrl+D.

7 Build the model again.

More Help. If the preceding procedures do not solve your issue,

If you can build a target application with the CAN board in your model, but
cannot download that application to the target, ensure that

• You are using a supported CAN board.

• You selected the correct choice from the Can Library parameter in
xpcexplr.

Obtaining PCI Board Slot and Bus Information
This section describes how to obtain information about the PCI devices in your
xPC Target system. This information is useful if you have or want to use
multiple boards of a particular type in your system. Before you start, ensure
that the I/O drive supports multiple boards. Refer to one of the following:

• xPC Target I/O Reference documentation

• xPC Target Interactive Hardware Selection Guide
(http://www.mathworks.com/support/product/XP/productnews/interact
ive_guide/xPC_Target_Interactive_Guide.html)

If the board type supports multiple boards, and these boards are installed in
the xPC Target system, perform the following procedure to obtain the bus and
slot information for these boards:

1 For example, type

getxpcpci('all')

2 Note the contents of the Bus and Slot columns of the PCI devices in which
you are interested.

13 Troubleshooting

13-16

3 Enter the bus and slot numbers as vectors into the PCI Slot parameter of
the PCI device. For example,

[1 9]

where 1 is the bus number and 9 is the slot number.

For additional information about PCI bus I/O devices, refer to the “PCI Bus I/O
Devices” section of the xPC Target I/O Reference documentation.

Why Does xPC Target Lose Connection with the Host PC When
Downloading Some Models?
If you are using xPC Target hardware in a model, downloading the model
might cause a loss of communication between the target PC and host PC if
either of the following is true:

• The referenced xPC Target board has an initialization time that is too slow.

• The referenced xPC Target driver has an issue.

xPC Target I/O Boards with Slow Initialization Times. Some xPC Target boards have
an initialization time that is too slow. This might cause xPC Target to run out
of time before a model downloads, causing the host PC to disconnect from the
target PC.

By default, if the host PC does not get a response from the target PC after
downloading a target application and waiting 5 seconds, the host PC software
times out. The target PC responds only after downloading and initializing the
target application.

Usually 5 seconds is enough time to initialize a target application, but in some
cases it might not be sufficient. The time to download a target application
mostly depends on your I/O hardware. For example, thermocouple hardware
(such as the PCI-DAS-TC board) takes longer to initialize. With slower
hardware, you might also get errors when building and downloading an
associated model. Even though the target PC is fine, a false timeout is reported
and you might get an error like the following:

"cannot connect to ping socket"

This is not a fatal error. You can reestablish communication with the following
procedure:

Advanced Troubleshooting

13-17

1 At the MATLAB Command Window, issue the xpctargetping command.
For example,

xpctargetping

2 Wait for the system to return from the xpctargetping.

3 Restart the target object.

Alternatively, you can enact a more permanent resolution and increase the
timeout value using the following procedure:

1 In your MATLAB working directory, create a file called xpcdltimeout.dat.

2 In this file, put a single integer. For example, enter

20

In this case, the host PC waits for about 20 seconds before declaring that a
timeout has occurred. Note that it does not take 20 seconds for every
download. The host PC polls the target PC about once every second, and if a
response is returned, declares success. Only in the case where a download
really fails does it take the full 20 seconds.

If the file xpcdltimeout.dat exists, it is read once before every download. To
change the timeout value, change the number in this file. Setting the timeout
to 5 is the same as the default. Note also that simply removing the file does not
change the timeout to the default value. xPC Target uses the last value you
entered until you restart MATLAB.

xPC Target Driver Software Issues. If there really is an error in a driver that causes
xPC Target to crash, a timeout occurs and xpctargetping fails with an error
message. In such an event, you need to reboot the target and reestablish
communication between the host PC and target PC.

To get yourself back up and running,

1 Remove the reference to the problem driver from the model.

2 Reboot the target PC.

3 At the MATLAB command line, issue xpctargetping to reestablish
communications.

13 Troubleshooting

13-18

4 If the driver with which you are having problems is one provided by The
MathWorks, try to pinpoint the problem area (for example, determine
whether certain settings in the driver block cause problems).

Alternatively, you can exit and restart MATLAB.

Why Is My Requested xPC Target Sample Time Different from the
Measured Sample Time?
You might notice that the sample time you request does not equal the actual
sample time you measure from your model. This difference depends on your
hardware. For xPC Target, your model sample time is as close to your
requested time as the hardware allows.

However, hardware does not allow infinite precision in setting the spacing
between the timer interrupts. It is this limitation that can cause the divergent
sample times.

For all PCs, the only timer that can generate interrupts is based on a 1.193
MHz clock. For xPC Target, the timer is set to a fixed number of ticks of this
frequency between interrupts. If you request a sample time of 1/10000, or 100,
microseconds, you do not get exactly 100 ticks. Instead, xPC Target calculates
that number as

100 x 10-6 seconds X 1.193 x 106 ticks/seconds = 119.3 ticks

xPC Target rounds this number to the nearest whole number, 119 ticks. The
actual sample time is then

119 ticks/(1.193 X 106 ticks/second) = 99.75 X 10-6 seconds
(99.75 microseconds)

Compared to the requested original sample time of 100 microseconds, this
value is .25% faster.

As an example of how you can use this value to derive the expected deviation
for your hardware, assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)

• Sample time of 1/10000

• Measured signal of 50.145 Hz

Advanced Troubleshooting

13-19

The difference between the expected and measured signals is .145, which
deviates from the expected signal value by .29% (.145/50). Compared to the
previously calculated value of .25%, there is a difference of .04% from the
expected value.

If you want to further refine the measured deviation for your hardware,
assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)

• Sample time of 1/10200

• Measured signal of 50.002 Hz

1/10200 seconds X 1.193 x 106 ticks/seconds = 116.96 ticks

Round this number to the nearest whole number of 117 ticks. The resulting
frequency is then

(116.96 ticks/117)(50) = 49.983 Hz

The difference between the expected and measured signal is .019, which
deviates from the expected signal value by .038% (.019/50.002). The deviation
when the sample time is 1/10000 is .04%.

Some amount of error is common for most PCs, and the margin of error varies
from machine to machine.

Note Most high-level operating systems, like Windows or Linux, occasionally
insert extra long intervals to compensate for errors in the timer. Be aware
that xPC Target does not attempt to compensate for timer errors. This is
because for xPC Target, close repeatability is more important for most models
than exact timing. However, some chips might have inherent designs that
produce residual jitters that could affect your system. For example, some
Pentium chips might produce residual jitters on the order of .5 microsecond
from interrupt to interrupt.

13 Troubleshooting

13-20

Why Did I Get Error -10: Invalid File ID on the Target PC?
You might get this error if you are acquiring signal data with a scope of type
file. This error occurs because the size of the signal data file exceeds the
available space on the disk. The signal data will most likely be corrupted and
irretrievable. You should delete the signal data file and reboot the xPC Target
system. To prevent this occurrence, monitor the size of the signal data file as
the scope acquires data.

Refer to The MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP) for additional
information.

Can I Write Custom xPC Target Device Drivers?
You might want to write your own driver if you want to include an unsupported
device driver in your xPC Target system. The xPC Target documentation does
not currently describe how to write your own xPC Target device drivers. Refer
to the following for further information:

• http://www.mathworks.com/support/solutions/data/31528.html

• Existing xPC Target device driver source code. Refer to the following
directory:

MATLABROOT\toolbox\rtw\targets\xpc\target\build\xpcblocks

• In the include directory of the device driver source code area, pay particular
attention to the following files:
- io_xpcimport.h
- pci_xpcimport.h

- time_xpcimport.h

Before you consider writing custom device drivers for the xPC Target system,
you should possess

• Good C programming skills

• Knowledge of writing S-functions and compiling those functions as C-Mex
functions

• Knowledge of SimStruct, a MATLAB Simulink C language header file that
defines the Simulink data structure and the SimStruct access macros. It
encapsulates all the data relating to the model or S-function, including block
parameters and outputs.

Advanced Troubleshooting

13-21

• An excellent understanding of the I/O hardware. Because of the real-time
nature of xPC Target, you must develop drivers with minimal latency. And
since most drivers access the I/O hardware at the lowest possible level
(register programming), you must have a good understanding of how to
control the board with register information. Indirectly, this means that you
must have access to the register-level programming manual for the device.

• A good knowledge of port and memory I/O access over various buses. You
need this information to access I/O hardware at the register level.

Can I Create a Stand-Alone xPC Target Application to Interact with a
Target Application?
Yes. You can use either the xPC Target API dynamic link library (DLL) or the
xPC Target component object model (COM) API library to create custom
stand-alone applications to control a real-time application running on the
target PC. To deploy these stand-alone applications, you must have the xPC
Target Embedded Option. Without the xPC Target Embedded Option, you can
create and use the stand-alone application in your environment, but cannot
deploy that application another host PC that does not contain your licensed
copy of xPC Target.

See the xPC Target API Reference Guide documentation for details.

Can Signal Outputs from Virtual Blocks Be Tagged?
You cannot directly tag signal outputs from virtual blocks. Instead, do the
following:

1 Add a unity gain block (a Gain block with a gain of 1) to the model.

2 Connect the signal output of the virtual block to the input of the unity gain
block.

3 Tag the output signal of the unity gain block.

Why Has the Stop Time Changed?
If you change a target application step size after it has been built, it is possible
that the target application will execute for fewer steps than you expect. The
number of execution steps is

floor(stop time/step size)

13 Troubleshooting

13-22

When you compile code for a model, Real Time Workshop calculates a number
of steps based on the current step size and stop time. If the stop time is not an
integral multiple of the step size, Real Time Workshop also adjusts the stop
time for that model based on the original stop time and step size. If you later
change a step size for a target application, but do not recompile the code, xPC
Target uses the new step size and the adjusted stop time. This might lead to
fewer steps than you expect.

For example, if a model has a stop time of 2.4 and a step size of 1, Real-Time
Workshop adjusts the stop time of the model to 2 at compilation. If you change
the step size to .6 but do not recompile the code, the expected number of steps
is 4, but the actual number of steps is 3. This is because Real-Time Workshop
still uses the adjusted stop time of 2.

To avoid this problem, ensure that the original stop time (as specified in the
model) is an integral multiple of the original step size.

Why Do I Get File System Disabled Error?
If your target PC does not have a FAT hard disk, the monitor on the target PC
displays the following error:

ERROR: No accessible disk found: file system disabled

If you do not want to access the target PC file system, you can ignore this
message. If you want to access the target PC file system, add a FAT hard disk
to the target PC system and reboot.

How can I Diagnose Network Problems with xPC Target?
If you experience network problems when using xPC Target, refer to The
MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP). This Web site has the
most up-to-date information about this topic.

14
Target PC Command-Line
Interface Reference

xPC Target provides a limited set of commands that you can use to work the target application after
it has been loaded to the target PC, and to interface with the scopes for that application. This chapter
is a reference of those commands.

Target PC Commands (p. 14-2) Description of commands on the target PC for stand-alone
applications that are not connected to the host PC

14 Target PC Command-Line Interface Reference

14-2

Target PC Commands
The target PC command-line interface enables you to work with target and
scope objects in a limited capacity. Methods let you interact directly with the
scope or target. Property commands let you work with target and scope
properties. Variable commands let you alias target PC command-line interface
commands to names of your choice. This section provides references for the
following:

• “Target Object Methods” on page 14-3

• “Target Object Property Commands” on page 14-3

• “Scope Object Methods” on page 14-5

• “Scope Object Property Commands” on page 14-8

• “Aliasing with Variable Commands” on page 14-10

Refer to Chapter 7, “Using the Target PC Command-Line Interface,” for a
description of how to use these methods and commands.

Target PC Commands

14-3

Target Object Methods
When you are using the target PC command-line interface, target object
methods are limited to starting and stopping the target application.

The following table lists the syntax for the target commands that you can use
on the target PC. The equivalent MATLAB syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods.These methods assume that you have already loaded the target
application onto the target PC.

Target Object Property Commands
When you are using the target PC command-line interface, target object
properties are limited to parameters, signals, stop time, and sample time. Note
the difference between a parameter index (0, 1, . . .) and a parameter name (P0,
P1, . . .).

The following table lists the syntax for the target commands that you can use
to manipulate target object properties. The MATLAB equivalent syntax is
shown in the right column, and the target object name tg is used as an example
for the MATLAB methods.

Target PC
Command

Description and Syntax MATLAB Equivalent

start Start the target application
currently loaded on the
target PC.

Syntax: start

tg.start or +tg

stop Stop the target application
currently running on the
target PC.

Syntax: stop

tg.stop or -tg

reboot Reboot the target PC.

Syntax: reboot

tg.reboot

14 Target PC Command-Line Interface Reference

14-4

Target PC
Command

Description and Syntax MATLAB Equivalent

getpar Display the value of a
block parameter using the
parameter index.

Syntax: getpar
parameter_index

get(tg, 'parameter_name')

setpar Change the value of a
block parameter using the
parameter index.

Syntax: setpar
parameter_index =
floating_point_number

set(tg, 'parameter_name',
number)

stoptime Enter a new stop time.
Use inf to run the target
application until you
manually stop it or reset
the target PC.

Syntax: stoptime =
floating_point_number

tg.stoptime = number

sampletime Enter a new sample time.

Syntax: sampletime =
floating_point_number

tg.sampletime = number

set(tg, 'SampleTime',
number)

Target PC Commands

14-5

Scope Object Methods
When using the target PC command-line interface, you use scope object
methods to start a scope and add signal traces. Notice that the methods
addscope and remscope are target object methods on the host PC, and notice
the difference between a signal index (0, 1, . . .) and a signal name (S0, S1, . . .).

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right

P# Display or change the
value of a block
parameter. For example,
P2 or P2=1.23e-4.

Syntax: parameter_name
or
parameter_name =
floating_point_number

parameter_name is P0,
P1, . . .

tg.getparam(parameter_
index)
tg.setparam(parameter_
index,floating_point_
number)

S# Display the value of a
signal. For example, S2.

Syntax: signal_name

signal_name is S0, S1,
. . .

tg.getsignal(signal_index)

Target PC
Command

Description and Syntax MATLAB Equivalent

14 Target PC Command-Line Interface Reference

14-6

column. The target object name tg and the scope object name sc are used as an
example for the MATLAB methods.

Target PC
Command

Description and Syntax MATLAB Equivalent

addscope addscope scope_index
addscope

tg.addscope(scope_index)
tg.addscope

remscope remscope scope_index
remscope all

tg.remscope(scope_index)
tg.remscope

startscope startscope scope_index sc.start or +sc

stopscope stopscope scope_index sc.stop or -sc

addsignal addsignal scope_index =
signal_index1,
signal_index2, . . .

sc.addsignal(signal_
index_vector)

remsignal remsignal scope_index =
signal_index1,
signal_index2, . . .

sc.remsignal(signal_
index_vector)

viewmode Zoom in to one scope or
zoom out to all scopes.

Syntax: viewmode
scope_index or left-click
the scope window

viewmode 'all' or
right-click any scope
window

Press the function key for
the scope, and then press V
to toggle viewmode.

Target PC Commands

14-7

ylimit ylimit scope_index
ylimit scope_index = auto
ylimit scope_index =
num1, num2

grid grid scope_index on
grid scope_index off

Target PC
Command

Description and Syntax MATLAB Equivalent

14 Target PC Command-Line Interface Reference

14-8

Scope Object Property Commands
When you use the target PC command-line interface, scope object properties
are limited to those shown in the following table. Notice the difference between
a scope index (0, 1, . . .) and the MATLAB variable name for the scope object on
the host PC. The scope index is indicated in the top left corner of a scope
window (SC0, SC1, . . .).

If a scope is running, you need to stop the scope before you can change a scope
property.

The following table lists the syntax for the target commands that you can use
on the target PC. The equivalent MATLAB syntax is shown in the right
column, and the scope object name sc is used as an example for the MATLAB
methods.

Target PC MATLAB

numsamples scope_index =
number

sc.NumSamples = number

decimation scope_index =
number

sc.Decimation = number

scopemode scope_index = 0 or
numerical, 1 or redraw, 2 or
sliding, 3 or rolling

sc.Mode = 'numerical',
'redraw', 'sliding', 'rolling'

triggermode scope_index = 0,
freerun, 1, software, 2,
signal, 3, scope

sc.TriggerMode = 'freerun',
'software', 'signal', 'scope'

numprepostsamples scope_index
= number

sc.NumPrePostSamples = number

triggersignal scope_index =
signal_index

sc.TriggerSignal =
signal_index

triggersample scope_index =
number

sc.TriggerSample = number

triggerlevel scope_index =
number

sc.TriggerLevel = number

Target PC Commands

14-9

triggerslope scope_index = 0,
either, 1, rising, 2, falling

sc.TriggerSlope = 'Either',
'Rising', 'Falling'

triggerscope scope_index2 =
scope_index1

sc.TriggerScope = scope_index1

triggerscopesample
scope_index= integer

sc.TriggerSample = integer

Press the function key for the scope,
and then press S or move mouse
into the scope window.

sc.trigger

Target PC MATLAB

14 Target PC Command-Line Interface Reference

14-10

Aliasing with Variable Commands
The following table lists the syntax for the aliasing variable commands that
you can use on the target PC. The MATLAB equivalent syntax is shown in the
right column.

Target PC
Command

Description and Syntax MATLAB Equivalent

setvar Set a variable to a value.
Later you can use that
variable to do a macro
expansion.

Syntax: setvar
variable_name =
target_pc_command

For example, you can type
setvar aa=startscope 2,
setvar bb=stopscope 2.

None

getvar Display the value of a
variable.

Syntax: getvar
variable_name

None

delvar Delete a variable.

Syntax: delvar
variable_name

None

delallvar Delete all variables.

Syntax: delallvar

None

showvar Display a list of variables.

Syntax: showvar

None

15

Obsoleted xPC Target
User Interfaces

This chapter describes the obsoleted xPC Target tools, xpcsetup and xpcrctool. However, their
presence is not guaranteed for future releases. Use the xPC Target Explorer, xpcexplr, instead. xPC
Target Explorer consolidates the functionality of both xpcsetup and xpcrctool into one
comprehensive GUI.

xPC Setup (p. 15-2) How to use the xPC Target setup tool, xpcsetup

Control with xPC Target Remote
Control Tool (p. 15-12)

How to use the xPC Remote Control tool, xpcrctool

15 Obsoleted xPC Target User Interfaces

15-2

xPC Setup
The following procedures describe how to use the xpcsetup tool to configure
your xPC Target environment. In the future, this tool will be obsoleted. You
should use xPC Target Explorer, xpcexplr, instead.

Environment Properties for Serial Communication
The xPC Target environment is defined by a group of properties. These
properties give xPC Target information about the software and hardware
products that it works with. You might change some of these properties often,
while others you will rarely want to change.

After you have installed xPC Target, you can specify the environment
properties for the host and target computers. Note that you must specify these
properties before you can build and download a target application:

1 In the MATLAB Command Window, type

xpcsetup

The xPC Target Setup window opens.

xPC Setup

15-3

The xPC Target Setup window has two sections:

- xPC Target
- xPC Target Embedded Option

If your license does not include the embedded option, the TargetBoot list is
disabled (grayed out) with BootFloppy as your only choice. With the xPC
Target Embedded Option installed, you have the additional choices of
DOSLoader and StandAlone.

2 From the CCompiler list, select either VisualC or Watcom.

3 In the CompilerPath box, enter the root path where you installed your
C/C++ compiler.

4 From the HostTargetComm list, select RS-232.

15 Obsoleted xPC Target User Interfaces

15-4

5 From the RS232HostPort list, select either COM1 or COM2 for the connection
on the host PC. xPC Target determines the COM port you use on the target
computer automatically.

6 From the RS232BaudRate list, select the baud rate for your serial
connection.

7 When you finish changing the properties, click the Update button.

xPC Target updates the environment with the new properties.

You do not have to exit and restart MATLAB after making changes to the xPC
Target environment, even if you change the communication between the host
and target from RS-232 to TCP/IP. However, you do have to recreate the target
boot disk and rebuild the target application from the Simulink model.

Environment Properties for Network
Communication
The xPC Target environment is defined by a group of properties. These
properties give xPC Target information about the software and hardware that
it works with. You might change some of these properties often, while others
you will rarely want to change.

After you have installed xPC Target, you can specify the environment
properties for the host and target computers. Note that you must specify these
properties before you can build and download a target application

1 In the MATLAB window, type

xpcsetup

The xPC Target Setup window opens.

xPC Setup

15-5

The xPC Target Setup window has two sections:

- xPC Target
- xPC Target Embedded Option

If your license does not include the embedded option, the TargetBoot list is
disabled (grayed out) with Boot Floppy as your only choice. With the xPC
Target Embedded Option installed, you have the additional choices of
DOSLoader and StandAlone.

2 From the CCompiler list, select either VisualC or Watcom.

3 In the CompilerPath box, enter the root path where you installed your
C/C++ compiler.

15 Obsoleted xPC Target User Interfaces

15-6

4 From the HostTargetComm list, select TCP/IP.

The TCP/IP text boxes become active.

You must enter the following properties with the correct values according to
your LAN environment. Ask your system administrator for values for the
following settings:

- TcpIpTargetAddress — This is the IP address for your target PC. An
example of an IP address is 192.168.0.1.

- TcpIpSubNetMask — This is the Subnet Mask address of your LAN. An
example of a Subnet Mask address is 255.255.0.0.

You enter the following properties depending on your specific circumstances:

- TcpIpTargetPort — This property is set by default to 22222. This value
should not cause any problems, because this number is higher than the
reserved area (telnet, ftp, ...) and it is only of relevance on the target PC.
If necessary, you can change this property value to any value higher than
20000 and less than 65536.

- TcpIpGateway — This property is set by default to 255.255.255.255.
This means that you do not use a gateway to connect to your target PC.

If you communicate with the target PC from within your LAN, you might
not need to define a gateway and change this setting.

If you communicate from a host PC located in a LAN different from your
target PC, you need to define a gateway and enter its IP address. This is
especially true if you want to work over the Internet. Ask your system
administrator for the IP address of the appropriate gateway.

The following properties are specific for the Ethernet card on your target PC:

- TcpIpTargetDriver — From the list, select NE2000, SMC91C9X, I82559, or
RTLANCE. This property is set by default to NE2000.

- TcpIpTargetBusType — This property is set by default to PCI. If
TcpIpTargetBusType is set to PCI, then the properties TcpIpISAMemPort
and TcpIpISAIRQ have no effect on TCP/IP communication and are
disabled (grayed out). If you are using an ISA bus Ethernet card, set
TcpIpTargetBusType to ISA and enter values for TcpIpISAMemPort and
TcpIpISAIRQ.

xPC Setup

15-7

- TcpIpISAMemPort and TcpIpISAIRQ — If you are using an ISA bus
Ethernet card, you must enter values for the properties TcpIpISAMemPort
and TcpIpISAIRQ. The values of these properties must correspond to the
jumper settings or ROM settings on your ISA bus Ethernet card.

5 When you finish changing the properties, click the Update button.

xPC Target updates the environment with the new properties.

Creating an xPC Target Boot Disk

1 In the MATLAB Command Window, type

xpcsetup

The xPC Target Setup window opens.

2 Click the BootDisk button.

If you didn’t update the current settings, the following message box opens.

Click No. Click the Update button, and then click the BootDisk button
again.

After you update the current properties and click the BootDisk button, the
following message box opens.

15 Obsoleted xPC Target User Interfaces

15-8

3 Insert a formatted 3.5 inch floppy disk into the host PC disk drive, and then
click OK.

All data on the disk will be erased.

xPC Target displays the following dialog box while creating the boot disk.
The process takes about 1 to 2 minutes.

4 Close the xPC Target Setup window.

5 Remove the target boot disk from the host PC disk drive and insert it into
your target PC disk drive.

Your next task is to install the software on the target PC and test your
installation.

Changing Environment Properties with a Graphical
Interface
xPC Target lets you define and change environment properties. These
properties include the path to the C/C++ compiler, the host PC COM port, the
logging buffer size, and many others. Collectively these properties are known
as the xPC Target environment.

To change an environment property using the xPC Target GUI, use the
following procedure:

xPC Setup

15-9

1 In the MATLAB window, type

xpcsetup

MATLAB opens the xPC Target Setup window.

The xPC Target Setup window has two sections: xPC Target and xPC
Target Embedded Option.

If your license does not include the xPC Target Embedded Option, the
TargetBoot box is grayed out, with BootFloppy as your only selection. With
the xPC Target Embedded Option, you have the additional choices of
DOSLoader and StandAlone.

15 Obsoleted xPC Target User Interfaces

15-10

2 Change properties in the environment by entering new property values in
the text boxes or choosing items from the lists.

After you make changes to the environment properties, you need to update
the xPC Target environment. Updating makes your changes in the xPC
Target Setup window match the current property values.

3 Click the Update button.

xPC Target updates the xPC Target environment and disables (grays out)
the Update button. As long as the Update button is enabled, the xPC Target
environment needs to be updated.

Saving and Loading the Environment Properties
This feature makes it easy and fast to switch between different xPC Target
environments:

1 In the xPC Target Setup window, and from the File menu, click Save
Settings.

The Save xPC Target Environment dialog box opens.

2 Enter the name of an environment file (*.mat). Select a directory, and then
click Save.

xPC Target saves the current environment properties.

After you have saved an xPC Target environment, you can load those
property values back into xPC Target.

3 From the File menu, click Load Settings.

The Load xPC Target Environment dialog box opens.

4 Select a directory with a previously saved environment file (*.mat). Select
the file, and then click Open.

5 In the xPC Target Setup window, click the Close button.

If you change the environment properties but do not click the Update
button, xPC Target displays a warning.

xPC Setup

15-11

Even if you decide to continue with the exit process, you do not lose the values
you changed. However, the current environment does not reflect the changes
you made in the xPC Target Setup window. If you reopen the xPC Target
Setup window, the changes you made reappear, and the Update button is
enabled.

15 Obsoleted xPC Target User Interfaces

15-12

Control with xPC Target Remote Control Tool
The following procedures describe how to use the xpcrctool tool to control your
xPC Target environment. In the future, this tool will be obsoleted. You should
use xPC Target Explorer, xpcexplr, instead.

This procedure assumes you have created an xPC Target boot disk and you
have booted the target PC. While the xPC Target Remote Control Tool has the
ability to build and download a target application, this procedure begins with
a target application already downloaded to the target PC.

1 In the MATLAB window, type

xpcrctool

The xPC Target Remote Control Tool window opens, connects to the target
PC, and displays information about the previously loaded target application.

2 If you want to rebuild the target application, from the File menu, click
Build/Load Application.

The Build/Download xPC Target Application dialog box opens.

Control with xPC Target Remote Control Tool

15-13

3 From the current open systems list, select the name of a Simulink model
(.mdl) you have open, or click the Browse button and select the name of a
Simulink model or a previously built target application (.dlm). Click OK.

The Build and Download Options dialog box opens.

4 Select a download option.

- If you click Build, Real-Time Workshop creates a target application from
the Simulink model and downloads it to the target PC.

- If you click Download, xpcrctool looks for a previously built target
application for the selected Simulink model and downloads it to the target
PC.

5 From the toolbar, click the Start target application button . The target
application begins running on the target PC, and stops when it reaches the
stop time.

6 In the Stop time box, enter a new stop time. For example, enter

inf

15 Obsoleted xPC Target User Interfaces

15-14

7 Again, click the Start target application button. The target application now
runs until you stop it.

8 From the toolbar, click the Stop target application button .

Signal Tracing with xPC Target Remote Control Tool
Opening an xPC Target scope window on the host or target PC allows you to
view signals while running and testing your target application.

After you create and download a target application to the target PC, you can
view signals. This procedure uses a Simulink model xpc_osc4.mdl as an
example, and assumes you have created a target application and downloaded
it to the target PC. See “xPC Target Application” in Chapter 3 of the xPC
Target Getting Started documentation:

1 In the MATLAB window, type

xpcrctool

The xPC Target Remote Control Tool window opens and connects to the
target application.

2 From the scope type list, select either Target scope, Host scope, or File
scope. For example, select Target scope, and then click Add Scope.

xPC Target creates a scope on the target PC, and in the Scopes list, displays
1(Target).

3 Click Add Signals.

The xPC Target Simulink Viewer window opens with a diagram of your
Simulink model.

Control with xPC Target Remote Control Tool

15-15

4 Move the mouse pointer over the signal lines.

- A blue line indicates that you can add this signal to a scope.

- A red line, with the message Signal cannot be monitored, indicates that
you cannot add this signal to a scope.

Note that you can add a signal while the scope is running or stopped. You do
not need to stop the scope to add or remove signals.

5 Point to a signal line and right-click. For example, right-click over the signal
from the Signal Generator.

A menu opens with a list of scopes and options to add a signal or to remove
a previously added signal.

15 Obsoleted xPC Target User Interfaces

15-16

6 From the menu, click an option. For example, click Add to scope 1.

The signal from the Signal Generator is added to the scope on the target PC
screen.

7 Point to the signal from the Transfer Function block, right-click, and select
Add to scope 1.

8 From the toolbar, click the start button . The target application and
scope begin running on the target PC, and then stop when the target
application reaches the stop time.

Setting Trigger for Signals with the Target Scope Manager

1 In the xPC Target Remote Control Tool window, from the Tools menu,
click Target Scope Manager.

The scope manager window opens. This window is the root window of the
xPC Target scope graphical interface, and it displays the scopes that you
have added.

2 Point to the Scope 1 button and right-click. A menu opens.

3 From the menu, click Properties.

The xPC Target: Target Scope 1 window opens.

Control with xPC Target Remote Control Tool

15-17

4 Click Define Trigger. The xPC Target: Trigger for Target Scope 1 window
opens.

5 From the Mode list, select Software, Signal, or Scope. For example, select
Signal.

6 From the Slope list, select EITHER, RISING, or FALLING. For example, select
RISING.

7 From the Signal list, click a signal to trigger the scope. For example, click
Signal_generator.

8 In the scope manager window opens, right-click the Scope 1 button and
select Start.

9 In the xPC Target Remote Control Tool window, from the toolbar, click the
start button .

The target application and scope begin to run on the target PC, and then
stop when the target application reaches the stop time.

15 Obsoleted xPC Target User Interfaces

15-18

Adding and Removing Signals with the Host Scope Manager

1 In the xPC Target Remote Control Tool window, from the scope type list,
select Host scope, then click Add Scope.

xPC Target creates a scope on the host PC, and in the Scopes list, displays
2 (Host).

2 In the xPC Target Remote Control Tool window, from the Tools menu,
click Host Scope Manager.

The scope manager window for scopes of type host opens.

3 Click the button for a scope. For example, click View Scope 2. The xPC
Target: Scope 2 window opens.

Control with xPC Target Remote Control Tool

15-19

4 In the scope window, click the Add/Remove button.

The Add/Remove Signals for Scope 2 dialog box opens. It allows you to
specify the signals to trace.

15 Obsoleted xPC Target User Interfaces

15-20

The SIGNAL list box displays all the available signals from the target
application. The names of the signals shown correspond to the block names
within the Simulink model xpc_osc4.mdl. The block name indicates the
output signal from that block.

Click a block name to highlight it, and then click the Add Signal button to
move the signal to the SIGNALS TO box on the right of the window. The
SIGNALS TO box contains the signals to be traced by this scope.

5 From the SIGNAL list box, click Transfer_Fcn, and then click the Add
Signal button. Similarly, add the Signal_Generator signal.

Changes to the Add/Remove Signals for Scope 2 dialog box are shown
below. You can remove the signals to trace by clicking the block name in the
SIGNALS TO box, and then clicking the Remove Signal button.

During the next steps, you can leave the Add/Remove Signals for Scope 2
dialog box open, or close and reopen it without restrictions.

Control with xPC Target Remote Control Tool

15-21

6 In the scope window, click the Start button at the bottom right of the
window.

7 In the xPC Target Remote Control Tool window, from the toolbar, click the
start button . The target application and scope begin to run on the target
PC, and then stop when they reach the stop time.

If you are using a scope of type host, there is a delay between collecting data
packages because of the communication overhead between the target PC and
the host PC. If you are using a scope of type target, the scope window is
updated faster than when using a scope on the host PC.

Saving Data from a Scope of Type Host to the MATLAB Workspace
While a target application is running, data is saved in an xPC Target Scope
buffer. You can export the buffer to MATLAB. Exporting data with the xPC
Target Scope window does not require you to add outport blocks to your
Simulink model, nor does it require you to activate the logging of signals. You
can select the signals to collect, and you can capture unexpected outputs during
a run.

15 Obsoleted xPC Target User Interfaces

15-22

After you complete a run with a scope, you can move data from the last data
package collected to the MATLAB workspace:

1 In the xPC Target Remote Control Tool window, from the Tools menu,
click Host Scope Manager.

The scope manager window and the xPC Target Scope window open.

2 In the xPC Target Scope window, from the Plot menu, click Variable
Name for Export.

The Variable Name for Export dialog box opens.

3 In the Data and Time text boxes, enter the names of the MATLAB variables
to save data from a trace. Click the Apply button, and then click the Close
button. The default name for the time vector is scopen_time, and the default
name for the signal vector is scopen_data where n is the scope number.

4 In the xPC Target Scope window, click the Export button. You can export
data regardless of whether a scope is started or stopped.

Control with xPC Target Remote Control Tool

15-23

5 In the MATLAB window, type

whos

MATLAB displays a list of variables and their descriptions. For example,

Name Size Bytes Class
scope2_data 250x2 4000 double array
scope2_time 1x250 2000 double array
tg 1x1 xpctarget.xpc

Grand total is 752 elements using 6000 bytes

You can now save or further analyze the data using the MATLAB variables.

6 Type

plot(scope2_time, scope2_data)

MATLAB plots the variables scope1_time and scope1_data in a new
window.

15 Obsoleted xPC Target User Interfaces

15-24

7 Close the scope manager window by using one of the following procedures:

- From the File menu, click Close All Scopes.

- From the File menu, click Close Scope Manager.

8 A message box opens asking whether you want to save the current scope
state. Use one of the following procedures:

- If you do not want to save the scope state, click No.

- If you want to save the scope state, click Yes. The Save Scopes dialog box
opens. Enter the name of a file, and then click Save.

Control with xPC Target Remote Control Tool

15-25

Signal Logging with xPC Target Remote Control Tool
You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

This procedure uses the model xpc_osc4.mdl as an example and assumes you
have created a target application and downloaded it to the target PC. See “xPC
Target Application” in Chapter 3 in the xPC Target Getting Started
documentation.

Note To use the xPC Target Remote Control Tool for signal logging, you need
to add an Outport block to your Simulink model, and you need to activate
logging on the Data Import/Export pane in the Configuration Parameters
dialog.

1 In the MATLAB window, type

xpcrctool

The xPC Target Remote Control Tool window opens, connects to the target
PC, and displays information about a previously loaded target application.

2 Select the Outputs check box and the Plot vs Time option.

3 From the toolbar, click the start button . The target application begins
running on the target PC, and then stops when it reaches the stop time.

4 Click the Plot Logged Data button.

MATLAB opens a figure window and draws a plot of the outputs.

15 Obsoleted xPC Target User Interfaces

15-26

Note Logged data is available only when the target application is not
running.

Parameter Tuning with xPC Target Remote Control
Tool
You can change parameters in your target application using the xPC Target
Simulink Viewer whether the target application is stopped or running.

After you create and download a target application to the target PC, you can
view signals. This procedure uses the Simulink model xpc_osc4.mdl as an

Control with xPC Target Remote Control Tool

15-27

example, and assumes that you have created a target application and
downloaded it to the target PC. See “xPC Target Application” in Chapter 3 of
the xPC Target Getting Started documentation:

1 In the MATLAB window, type

xpcrctool

The xPC Target Remote Control Tool window opens and connects to the
target application.

2 From the Tools menu, click Tune Parameters.

The xPC Target Simulink Viewer window opens with a diagram of your
Simulink model.

3 Move the mouse pointer over the blocks.

- A blue highlight around a block indicates that this block contains tunable
parameters.

- A red highlight around a block indicates that there are no tunable
parameters.

15 Obsoleted xPC Target User Interfaces

15-28

4 Point to a block and right-click. For example, right-click over the Signal
Generator block.

The Block Parameters dialog box opens.

5 Enter new parameters, and then click OK.

The new parameter values are downloaded to the target application. If the
target application is running, you can immediately see the effect of the
change.

16
Function Reference

16 Function Reference

16-2

Functions — Categorical List
This topic contains reference pages for xPC Target functions.

Software Environment

“Software Environment” on
page 16-2

Help you define the software and hardware
environment of the host PC as well as the
target PC

“GUI” on page 16-3 Open xPC Target ancillary GUIs

“Test” on page 16-3 Run tests from the MATLAB Command
Window

“Target Objects” on
page 16-3

Control a target application on the target PC
from the host PC

“Scope Objects” on
page 16-6

Control scopes on your target PC

“File and File System
Objects” on page 16-7

Control file and file system objects in the
target PC file system

getxpcenv List environment properties in the MATLAB
window or assign the list as a cell array to a
MATLAB variable.

setxpcenv First of two steps to change environment properties.
See also updatexpcenv.

updatexpcenv Change the current environment properties to equal
the new properties entered using the function
setxpcenv.

xpcbootdisk Create a boot disk containing the kernel according
to the current environment properties.

xpcwwwenable Disconnect the target PC from the current client
application

Functions — Categorical List

16-3

GUI

Test

Target Objects
The target object methods allow you to control a target application on the
target PC from the host PC. You enter target object methods in the MATLAB
window on the host PC or use M-file scripts. To access the M-file help for these
methods, use the syntax

help xpctarget.xpc/method_name

xpcexplr Open the xPC Target Explorer window.

xpcrctool Open the remote control tool on the host PC for
running the target application on the target PC.

xpcscope Open the xPC Target:Host Manager scope
manager window on the host PC for scopes with
type host.

xpcsetup Open the xPC Target setup window.

xpctargetspy Open the Real-Time xPC Target Spy window on
the host PC. Use this GUI to upload the target PC
screen to the host PC.

xpctgscope Open the xPC Target:Target Manager scope
manager window on the host PC for scopes with
type target.

getxpcpci Determine which PCI boards are installed in the
target PC.

xpctargetping Test the communication between the host PC and
the target PC.

xpctest Test the xPC Target installation.

16 Function Reference

16-4

If you want to control the target application from the target PC, use target PC
commands. See “Using the Target PC Command-Line Interface” on page 7-1.

xpc Call the target object constructor,
xpctarget.xpc

xpctarget.xpc Create a target object on the host PC
(constructor).

delete Remove a target object on the host PC
(destructor).

set (target object) Set writable target object properties to the
specified values.

get (target object) Return the values of readable properties
from a target object.

start (target object) Start the execution of a target application
on the target PC.

stop (target object) Stop the execution of a target application
on the target PC.

load Download a target application from the
host PC to the target PC.

unload Unload a target application from the target
PC. If a target application is running, it is
stopped and unloaded.

addscope Create a new scope with type 'host',
'target', or 'file' on the target PC.

setparam Set writable target object parameters to the
specified values.

getparam Return the value of the specified parameter
index from the target object.

getparamid Get a parameter index or property name
from the parameter list

getparamname Get the block path and parameter name
from the index list

Functions — Categorical List

16-5

getscope Return the properties of a previously
created scope from the target PC. The scope
properties can be assigned to a MATLAB
variable to create a scope object.

getsignal Return the value of the specified signal
index from the target object.

getsignalid Get the signal index or signal property from
the signal list

getsignalname Get the signal name from the index list

remscope Remove a scope from the target PC. This
method does not remove the scope object on
the host PC that represents the scope.

getparamid Return the property name or index of a
parameter from the target object.

getsignalid Return the property name or index of a
signal from the target object.

saveparamset Save the parameter values of the current
target application.

loadparamset Restore the parameter values saved in the
specified file.

getlog Upload and return one of the data logs from
the target PC to the host PC (TimeLog,
StateLog, OutputLog, TETLog).

reboot Reboot the target PC. If a target application
is running, the target application is
stopped, and then the target PC is rebooted.

close Close the serial connection to the target PC
so that the host PC can use the COMM port
for another device.

targetping Test communication between a host and its
target computers.

16 Function Reference

16-6

Scope Objects
The scope object methods allow you to control scopes on your target PC.

If you want to control the target application from the target PC, use target PC
commands. See Chapter 7, “Using the Target PC Command-Line Interface.”

set (scope object) Set writable scope object properties to the
specified values. For a list of writable values,
use set(scope_object).

get (scope object) Return the values of readable properties
from a scope object.

addsignal Add a signal to a scope and a scope object.
Specify the signal using the signal index
from the target object.

remsignal Remove a signal from a scope and a scope
object. Specify the signal using signal index
from the scope object.

start (scope object) Start a scope, but do not necessarily start the
acquisition of data. The acquisition of data
depends on the trigger mode.

stop (scope object) Stop a scope and the acquisition of data.

trigger Start the acquisition of data from the target
application using a scope:

• If TriggerMode ='Software', then the
scope can only be triggered by software
using the method sc.trigger.

• If TriggerMode = 'FreeRun', 'Signal', or
'Scope', you can trigger the scope by
software before the scope is triggered by
one of the other modes.

Functions — Categorical List

16-7

File and File System Objects
xPC Target uses the xpctarget.ftp object to represent a target PC file, such
as a signal data file created by an xPC Target scope of type file. Use this
object to perform file transfer operations on that file. xPC Target uses the
xpctarget.fs object to represent the target PC file system. Use this object to
perform file system manipulations.

Both xpctarget.ftp and xpctarget.fs belong to the xpctarget.fsbase
object. This object encompasses the methods common to xpctarget.ftp and
xpctarget.fs. xPC Target creates the xpctarget.fs base object when you
create either an xpctarget.ftp or xpctarget.fs object.

This section includes the following topics:

• “xpctarget.fsbase Functions” on page 16-7 — List of methods with a brief
description

• “xpctarget.ftp Functions” on page 16-8 — List of methods with a brief
description

• “xpctarget.fs Functions” on page 16-8 — List of methods with a brief
description

It concludes with a more complete description of these methods.

Refer to Chapter 8, “Working with Target PC Files and File Systems,” for a
description of how to use these objects and methods.

xpctarget.fsbase Functions
You enter xpctarget.fsbase object methods in the MATLAB Command
Window on the host PC or use M-file scripts.

You can call the xpctarget.fsbase methods for both xpctarget.ftp and
xpctarget.fs objects.

cd Change directory on target PC.

dir List the contents of the current directory on the
target PC.

mkdir Make a directory on the target PC.

16 Function Reference

16-8

xpctarget.ftp Functions
The xpctarget.ftp methods allow you to work with a target PC file, such as
a signal data file, from the host PC. You enter target object methods in the
MATLAB window on the host PC or use M-file scripts.

xpctarget.fs Functions
The xpctarget.fs methods allow you to work with the target PC file system
from the host PC. You enter target object methods in the MATLAB window
on the host PC or use M-file scripts.

The xpctarget.fs methods are listed in the following table.

pwd Retrieve the current directory path of the
target PC.

rmdir Remove the specified directory from the target
PC.

get (ftp) Retrieve a copy of the requested file from the target
PC.

put Copy a file from the host PC to the target PC.

diskinfo Get information about a target PC drive.

fclose Close one or more open target PC files
(similar to MATLAB fclose function).

fileinfo Get target PC file information.

filetable Get information about open files in the target
PC file system.

fopen Open a target PC file for reading (similar to
MATLAB fopen function).

fread Read an open target PC file (similar to
MATLAB fread function).

fwrite Write binary data to an open target PC file
(similar to MATLAB fwrite function).

Functions — Categorical List

16-9

getfilesize Get the size (in bytes) of a file on the target
PC.

removefile Remove a file from the target PC.

16

16-10

Functions — Alphabetical List 16

This section contains function reference pages listed alphabetically.

addscope

16-11

16addscopePurpose Create one or more scopes on the target PC

Syntax MATLAB command line

Create a scope and scope object without assigning to a MATLAB variable.

addscope(target_object, scope_type, scope_number)
target_object.addscope(scope_type, scope_number)

Create a scope, scope object, and assign to a MATLAB variable

scope_object = addscope(target_object, scope_type, scope_number)

scope_object = target_object.addscope(scope_type, scope_number)

Target PC command line — When you are using this command on the target
PC, you can only add a scope of type target.

addscope
addscope scope_number

Arguments

Description addscope creates a scope on the target PC, a scope object on the host PC, and
updates the target object property Scopes. This method returns a scope object
vector. If the result is not assigned to a variable, the scope object properties are
listed in the MATLAB window. If you try to add a scope with the same index as
an existing scope, the result is an error.

A scope acquires data from the target application and displays that data on the
target PC, uploads the data to the host PC, or stores that data in a file in the
target PC file system.

target_object Name of a target object. The default target name
is tg.

scope_type Values are 'host', 'target', or 'file'. This
argument is optional with host as the default
value.

scope_number Vector of new scope indices. This argument is
optional. The next available integer in the target
object property Scopes as the default value.
If you enter a scope index for an existing scope
object, the result is an error.

addscope

16-12

All scopes of type target, host, or file run on the target PC.

Scope of type target — Data collected is displayed on the target screen and
acquisition of the next data package is initiated by the kernel.

Scope of type host — Collects data and waits for a command from the host PC
for uploading the data. The data is then displayed using a scope viewer on the
host or other MATLAB functions.

Scope of type file — Data collected is stored in a file in the target PC file
system. You can then transfer the data to another PC for examination or
plotting.

Examples Create a scope and scope object sc1 using the method addscope. A target scope
is created on the target PC with an index of 1, and a scope object is created on
the host PC, assigned to the variable sc1. The target object property Scopes is
changed from No scopes defined to 1.

sc1 = addscope(tg,'target',1) or sc1 = tg.addscope('target',1)

Create a scope with the method addscope and then create a scope object,
corresponding to this scope, using the method getscope. A target scope is
created on the target PC with an index of 1, and a scope object is created on the
host PC, but it is not assigned to a variable. The target object property Scopes
is changed from No scopes defined to 1.

addscope(tg,'target',1) or tg.addscope('target',1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

target
object

target
application

Host PC Target PC

kernel
Scope engine

addscope

kernel
Scope engine

target
object

target
application

Host PC Target PC

scopescope
object

addscope

16-13

Create two scopes using a vector of scope objects scvector. Two target scopes
are created on the target PC with scope indices of 1 and 2, and two scope objects
are created on the host PC that represent the scopes on the target PC. The
target object property Scopes is changed from No scopes defined to 1,2.

scvector = addscope(tg, 'target', [1, 2])

Create a scope and scope object sc4 of type file using the method addscope.
A file scope is created on the target PC with an index of 4. A scope object is
created on the host PC and is assigned to the variable sc4. The target object
property Scopes is changed from No scopes defined to 4.

sc4 = addscope(tg,'file',4) or sc4 = tg.addscope('file',4)

See Also xPC Target target object methods remscope and getscope.

xPC Target GUI function xpcscope.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page 6-6.

addsignal

16-14

16addsignalPurpose Add signals to a scope represented by a scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)

scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments

Description addsignal adds signals to a scope object. The signals must be specified by their
indices, which you can retrieve using the target object method getsignalid. If
the scope_object_vector has two or more scope objects, the same signals are
assigned to each scope.

Note You must stop the scope before you can add a signal to it.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1. The
signals are added to the scope, and the scope object property Signals is
updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

Display a list of properties and values for the scope object sc1 with the property
Signals, as shown below.

sc1.Signals

scope_object_vector Name of a single scope object or the name of a
vector of scope objects.

signal_index_vector For one signal, use a single number. For two or
more signals, enclose numbers in brackets and
separate with commas.

scope_index Single scope index.

addsignal

16-15

Signals = 1 : Signal Generator
 0 : Integrator1

Another way to add signals without using the method addsignal is to use the
scope object method set.

set(sc1,'Signals', [0,1]) or sc1.set('signals',[0,1]

Or, to directly assign signal values to the scope object property Signals,

sc1.signals = [0,1]

See Also The xPC Target scope object methods remsignal and set (scope object). The
target object methods addscope and getsignalid.

cd

16-16

16cdPurpose Change directory on the target PC

Syntax MATLAB command line

cd(file_obj,target_PC_dir)
file_obj.cd(target_PC_dir)

Arguments

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs objects.
From the host PC, changes directory on the target PC.

Examples Change directory from the current to one named logs for the file system object
fsys.

cd(fsys,logs) or fsys.cd(logs)

Change directory from the current to one named logs for the FTP object f.

cd(f,logs) or f.cd(logs)

See Also xPC Target file object methods mkdir and pwd.

MATLAB cd function.

file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

target_PC_dir Name of the target PC directory to change to.

close

16-17

16closePurpose Close the serial port connecting the host PC with the target PC

Syntax MATLAB command line

close(target_object)
target_object.close

Arguments

Description close closes the serial connection between the host PC and a target PC. If you
want to use the serial port for another function without quitting MATLAB —
for example, a modem — use this function to close the connection.

target_object Name of a target object.

delete

16-18

16deletePurpose Remove target object

Syntax MATLAB command line

delete(target_object)
target_object.delete

Arguments

Description Use this method to completely remove the target object. If there are any scopes
still associated with the target, this method removes all those scope objects as
well.

To ensure that you have successfully removed a target object, type

target_object

If a message like the following is displayed, you have successfully removed the
target object.

target_object =

handle

See Also The xPC Target target object methods targetping and xpctarget.xpc.

target_object Name of a target object.

dir

16-19

16dirPurpose List the contents of the current directory on the target PC

Syntax MATLAB command line

dir(file_obj)

Arguments

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs objects.
From the host PC, lists the contents of the current directory on the target PC.

To get the results in an M-by-1 structure, use a syntax like
ans=dir(file_obj). This syntax returns a structure like the following:

ans =
1x5 struct array with fields:
name
date
time
bytes
isdir

where

• name — Name of an object in the directory, shown as a cell array. The name,
stored in the first element of the cell array, can have up to eight characters.
The three-character file extension is stored in the second element of the cell
array.

• date — Date of the last save of that object

• time — Time of the last save of that object

• bytes — Size in bytes of that object

• isdir — Logical value indicating that the object is (1) or is not (0) a directory

Examples List the contents of the current directory for the file system object fsys. You
can also list the contents of the current directory for the FTP object f.

dir(fsys) or dir(f)

4/12/1998 20:00 222390 IO SYS

file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

dir

16-20

 11/2/2003 13:54 6 MSDOS SYS
 11/5/1998 20:01 93880 COMMAND COM
 11/2/2003 13:54 <DIR> 0 TEMP
 11/2/2003 14:00 33 AUTOEXEC BAT
 11/2/2003 14:00 512 BOOTSECT DOS
 18/2/2003 16:33 4512 SC1SIGNA DAT
 18/2/2003 16:17 <DIR> 0 FOUND 000
 29/3/2003 19:19 8512 DATA DAT
 28/3/2003 16:41 8512 DATADATA DAT
 28/3/2003 16:29 4512 SC4INTEG DAT
 1/4/2003 9:28 201326592 PAGEFILE SYS
 11/2/2003 14:13 <DIR> 0 WINNT
 4/5/2001 13:05 214432 NTLDR '
 4/5/2001 13:05 34468 NTDETECT COM
 11/2/2003 14:15 <DIR> 0 DRIVERS
 22/1/2001 11:42 217 BOOT INI'
 28/3/2003 16:41 8512 A DAT
 29/3/2003 19:19 2512 SC3SIGNA DAT
 11/2/2003 14:25 <DIR> 0 INETPUB
 11/2/2003 14:28 0 CONFIG SYS
 29/3/2003 19:10 2512 SC3INTEG DAT
 1/4/2003 18:05 2512 SC1GAIN DAT
 11/2/2003 17:26 <DIR> 0 UTILIT~1

You must use the dir(f) syntax to list the contents of the directory.

See Also xPC Target file object methods mkdir, cd, and pwd.

MATLAB dir function.

diskinfo

16-21

16diskinfoPurpose Get information about a target PC drive

Syntax MATLAB command line

diskinfo(filesys_obj,target_PC_drive)
filesys_obj.diskinfo(target_PC_drive)

Arguments

Description Method of xpctarget.fs objects. From the host PC, returns disk information
for the specified target PC drive.

Examples Return disk information for the target PC C:\ drive for the file system object
fsys.

diskinfo(fsys,'C:\') or fsys.diskinfo('C:\')

ans =
 Label: 'SYSTEM '
 DriveLetter: 'C'
 Reserved: ''
 SerialNumber: 1.0294e+009
 FirstPhysicalSector: 63
 FATType: 32
 FATCount: 2
 MaxDirEntries: 0
 BytesPerSector: 512
 SectorsPerCluster: 4
 TotalClusters: 2040293
 BadClusters: 0
 FreeClusters: 1007937
 Files: 19968
 FileChains: 22480
 FreeChains: 1300
 LargestFreeChain: 64349

filesys_obj Name of the xpctarget.fs file system object.

target_PC_drive Name of the target PC drive for which to return
information.

fclose

16-22

16fclosePurpose Close one or more open target PC files (similar to MATLAB fclose function)

Syntax MATLAB command line

fclose(filesys_obj,file_ID)
filesys_obj.fclose(file_ID)

Arguments

Description Method of xpctarget.fs objects. From the host PC, closes one or more open
files in the target PC file system (except standard input, output, and error). The
file_ID argument is the file identifier associated with an open file (see fopen
and filetable). You cannot have more than eight files open in the file system.

Examples Close the open file identified by the file identifier h in the file system object
fsys.

fclose(fsys,h) or fsys.fclose(h)

See Also xPC Target file object methods fopen, fread, filetable, and fwrite.

MATLAB fclose function.

filesys_obj Name of the xpctarget.fs file system object.

file_ID File identifier of the file to close.

fileinfo

16-23

16fileinfoPurpose Get target PC file information

Syntax MATLAB command line

fileinfo(filesys_obj,file_ID)
filesys_obj.fileinfo(file_ID)

Arguments

Description Method of xpctarget.fs objects. From the host PC, gets the information for
the file associated with file_ID.

Examples Return file information for the file associated with the file identifier h in the file
system object fsys.

fileinfo(fsys,h) or fsys.fileinfo(h)

ans =
FilePos: 0

 AllocatedSize: 12288
 ClusterChains: 1
 VolumeSerialNumber: 1.0450e+009

 FullName: 'C:\DATA.DAT'

filesys_obj Name of the xpctarget.fs file system object.

file_ID File identifier of the file for which to get file
information.

filetable

16-24

16filetablePurpose Get information about open files in the target PC file system

Syntax MATLAB command line

filetable(filesys_obj)
filesys_obj.filetable

Arguments

Description Method of xpctarget.fs objects. From the host PC, displays a table of the open
files in the target PC file system. You cannot have more than eight files open
in the file system.

Examples Return a table of the open files in the target PC file system for the file system
object fsys.

filetable(fsys) or fsys.filetable

ans =
Index Handle Flags FilePos Name
--
 0 00060000 R__ 8512 C:\DATA.DAT
 1 00080001 R__ 0 C:\DATA1.DAT
 2 000A0002 R__ 8512 C:\DATA2.DAT
 3 000C0003 R__ 8512 C:\DATA3.DAT

 4 001E000S R__ 0 C:\DATA4.DAT

The table returns the open file handles in hexadecimal. To convert a handle to
one that other xpctarget.fs methods, such as fclose, can use, use the
hex2dec function. For example,

h1 = hex2dec('001E0001'))

h1 =
1966081

To close that file, use the xpctarget.fs fclose method. For example,

fsys.fclose(h1);

See Also xPC Target file object methods fopen and fclose.

filesys_obj Name of the xpctarget.fs file system object.

fopen

16-25

16fopenPurpose Open a target PC file for reading (similar to MATLAB fopen function)

Syntax MATLAB command line

file_ID = fopen(file_obj,'file_name')
file_ID = file_obj.fopen('file_name')
file_ID = fopen(file_obj,'file_name',permission)
file_ID = file_obj.fopen('file_name',permission)

Arguments

Description Method of xpctarget.fs objects. From the host PC, opens the specified
filename on the target PC for binary access.

The permission argument values are

• 'r' to open the file for reading (default)

• 'w' to open the file for writing. The method creates the file if it does not
already exist.

You cannot have more than eight files open in the file system. This method
returns the file identifier for the open file in file_ID. You use file_ID as the
first argument to the other file I/O methods (such as fclose, fread, and
fwrite).

 Examples Open the file data.dat in the target PC file system object fsys. Assign the
resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')

ans =
 2883584
d = fread(h);

See Also xPC Target file object methods fclose, fread, and fwrite.

MATLAB fopen function.

file_obj Name of the xpctarget.fs object.

'file_name' Name of the target PC to open.

permission Values are 'r' or 'w'. This argument is optional
with 'r' as the default value.

fread

16-26

16freadPurpose Read an open target PC file (similar to MATLAB fread function)

Syntax MATLAB command line

fread(file_obj,file_ID)
file_obj.fread(file_ID)

Arguments

Description Method of xpctarget.fs objects. From the host PC, reads the binary data from
the file on the target PC and writes it into matrix A. The file_ID argument is
the file identifier associated with an open file (see fopen).

Examples Open the file data.dat in the target PC file system object fsys. Assign the
resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')

ans =
 2883584
d = fread(h);

This reads the file data.dat and stores the contents of the file to d. This content
is in the xPC Target file format.

See Also xPC Target file object methods fclose, fopen, and fwrite.

MATLAB fread function.

file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to read.

fwrite

16-27

16fwritePurpose Write binary data to an open target PC file (similar to MATLAB fwrite
function)

Syntax MATLAB command line

fwrite(file_obj,file_ID,A)
file_obj.fwrite(file_ID,A)

Arguments

Description Method of xpctarget.fs objects. From the host PC, writes the elements of
matrix A to the file identified by file_ID. The data is written to the file in
column order. The file_ID argument is the file identifier associated with an
open file (see fopen). fwrite requires that the file be open with write
permission.

Examples Open the file data.dat in the target PC file system object fsys. Assign the
resulting file handle to a variable for writing.

h = fopen(fsys,'data.dat','w') or fsys.fopen('data.dat','w')

ans =
 2883584
d = fwrite(fsys,h,magic(5));

This writes the elements of matrix A to the file handle h. This content is written
in column order.

See Also xPC Target file object methods fclose, fopen, and fread.

MATLAB fwrite function.

file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to write.

A Elements of matrix A to be written to the specified
file.

get (ftp)

16-28

16get (ftp)Purpose Retrieve a copy of the requested file from the target PC (xpctarget.ftp object)

Syntax MATLAB command line
get(file_obj,file_name)
file_obj.get(file_name)

Arguments

Description Method of xpctarget.ftp objects. Copies the specified filename from the target
PC to the current directory of the host PC. file_name must be either a fully
qualified filename on the target PC, or located in the current directory of the
target PC.

Examples Retrieve a copy of the file named data.dat from the current directory of the
target PC file object f.

get(f,'data.dat') or f.get('data.dat')

ans = data.dat

See Also xPC Target file object methods put.

file_obj Name of the xpctarget.ftp object.

file_name Name of a file on the target PC.

get (scope object)

16-29

16get (scope object)Purpose Return the property values for scope objects

Syntax MATLAB command line

get(scope_object_vector)

get(scope_object_vector, 'scope_object_property')

get(scope_object_vector, scope_object_property_vector)

Arguments

Description get gets the value of readable scope object properties from a scope object or the
same property from each scope object in a vector of scope objects. Scope object
properties let you select signals to acquire, set triggering modes, and access
signal information from the target application. You can view and change these
properties using scope object methods.

target_object Name of a target object.

scope_object_vector Name of a single scope or name of a vector of
scope objects.

scope_object_property Name of a scope object property.

get (scope object)

16-30

The properties for a scope object are listed in the following table. This table
includes descriptions of the properties and the properties you can change
directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated
with this scope object.

AutoRestart For scopes of type 'File', enable the
file scope to collect data up to the
number of samples (NumSamples), then
start over again, appending the new
data to the end of the signal data file.
Clear the AutoRestart check box to
have the scope of type 'File' collect
data up to Number of samples, then
stop.

If the named signal data file already
exists when you start the target
application, xPC Target overwrites the
old data with the new signal data.

For scopes of type 'Host' or 'Target',
this parameter has no effect.

Yes

Data Contains the output data for a single
data package from a scope.

For scopes of type 'Target' or 'File',
this parameter has no effect.

Decimation A number n, where every nth sample is
acquired in a scope window.

Yes

get (scope object)

16-31

Filename Provide a name for the file to contain
the signal data. By default, the target
PC writes the signal data to a file
named C:\data.dat for scope blocks.
Note that for scopes of type 'File'
created through the MATLAB interface,
there is no name initially assigned to
FileName. After you start the scope,
xPC Target assigns a name for the file
to acquire the signal data. This name
typically consists of the scope object
name, ScopeId, and the beginning
letters of the first signal added to the
scope.

For scopes of type 'Host' or 'Target',
this parameter has no effect.

Yes

Grid Values are 'on' and 'off'.

For scopes of type 'Host' or 'File',
this parameter has no effect.

Yes

Property Description Writable

get (scope object)

16-32

Mode For scopes of type 'Target', indicate
how a scope displays the signals. Values
are 'Numerical', 'Redraw' (default),
'Sliding', and 'Rolling'.

For scopes of type File, specify when a
file allocation table (FAT) entry is
updated. Values are 'Lazy' or
'Commit'. Both modes write the signal
data to the file. With 'Commit' mode,
each file write operation
simultaneously updates the FAT entry
for the file. This mode is slower, but the
file system always knows the actual file
size. With 'Lazy' mode, the FAT entry
is updated only when the file is closed
and not during each file write
operation. This mode is faster, but if the
system crashes before the file is closed,
the file system might not know the
actual file size (the file contents,
however, will be intact).

For scopes of type Host, this parameter
has no effect.

Yes

NumPrePostSamples For scopes of type 'Host' or 'Target',
this parameter is the number of
samples collected before or after a
trigger event. The default value is 0.
Entering a negative value collects
samples before the trigger event.
Entering a positive value collects
samples after the trigger event. If you
set TriggerMode to 'FreeRun', this
property has no effect on data
acquisition.

Property Description Writable

get (scope object)

16-33

NumSamples Number of contiguous samples
captured during the acquisition of a
data package. If the scope stops before
capturing this number of samples, the
scope has the collected data up to the
end of data collection, then has zeroes
for the remaining uncollected data.
Note that you should know what type of
data you are collecting, it is possible
that your data contains zeroes.

For scopes of type 'File', this
parameter works in conjunction with
the AutoRestart check box. If the
AutoRestart box is selected, the file
scope collects data up to Number of
Samples, then starts over again,
overwriting the buffer. If the
AutoRestart box is not selected, the file
scope collects data only up to Number
of Samples, then stops.

Yes

ScopeId A numeric index, unique for each scope.

Signals List of signal indices from the target
object to display on the scope.

StartTime Time within the total execution time
when a scope begins acquiring a data
package.

For scopes of type 'Target', this
parameter has no effect.

Property Description Writable

get (scope object)

16-34

Status Indicate whether data is being
acquired, the scope is waiting for a
trigger, the scope has been stopped
(interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for
being Triggered', 'Interrupted',
and 'Finished'.

Time Contains the time data for a single data
package from a scope.

TriggerLevel If TriggerMode is 'Signal', indicates
the value the signal has to cross to
trigger the scope and start acquiring
data. The trigger level can be crossed
with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values
are 'FreeRun' (default), 'Software',
'Signal', and 'Scope'.

Yes

Property Description Writable

get (scope object)

16-35

TriggerSample If TriggerMode is 'Scope', then
TriggerSample specifies which sample
of the triggering scope the current scope
should trigger on. For example, if
TriggerSample is 0 (default), the
current scope triggers on sample 0 (first
sample acquired) of the triggering
scope. This means that the two scopes
will be perfectly synchronized. If
TriggerSample is 1, the first sample
(sample 0) of the current scope will be
at the same instant as sample number 1
(second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting
TriggerSample to -1 means that the
current scope is triggered at the end of
the acquisition cycle of the triggering
scope. Thus, the first sample of the
triggering scope is acquired one sample
after the last sample of the triggering
scope.

TriggerScope If TriggerMode is 'Scope', identifies
the scope to use for a trigger. A scope
can be set to trigger when another scope
is triggered. You do this by setting the
slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies
the block output signal to use for
triggering the scope. You identify the
signal with a signal index from the
target object property Signal.

Yes

Property Description Writable

get (scope object)

16-36

Examples List all the readable properties, along with their current values. This is given
in the form of a structure whose field names are the property names and whose
field values are property values.

get(sc)

TriggerSlope If TriggerMode is 'Signal', indicates
whether the trigger is on a rising or
falling signal. Values are 'Either'
(default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is
displayed on the host computer or on
the target computer. Values are 'Host',
'Target', and 'File'.

WriteSize Enter the block size, in bytes, of the
data chunks. This parameter specifies
that a memory buffer, of length number
of samples (NumSamples), collect data in
multiples of WriteSize. By default, this
parameter is 512 bytes, which is the
typical disk sector size. Using a block
size that is the same as the disk sector
size provides optimal performance.

If you experience a system crash, you
can expect to lose an amount of data the
size of WriteSize.

For scopes of type 'Host' or 'Target',
this parameter has no effect.

Yes

YLimit Minimum and maximum y-axis values.
This property can be set to 'auto'.

For scopes of type 'Host' or 'File',
this parameter has no effect.

Yes

Property Description Writable

get (scope object)

16-37

List the value for the scope object property Type. Notice that the property name
is a string, in quotation marks, and is not case sensitive.

get(sc,'type')
ans = Target

See Also The xPC Target scope object method set (scope object). The target object
methods set (target object). The built-in MATLAB functions get and set.

get (target object)

16-38

16get (target object)Purpose Return the property values for target objects

Syntax MATLAB command line
get(target_object, 'target_object_property')

Arguments

Description get gets the value of readable target object properties from a target object.

The properties for a target object are listed in the following table. This table
includes a description of the properties and which properties you can change
directly by assigning a value.

target_object Name of a target object.

'target_object_property' Name of a target object property.

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

AvgTET Average task execution time. This value is
an average of the measured CPU times, in
seconds, to run the model equations and
post outputs during each sample interval.
Task execution time is nearly constant,
with minor deviations due to cache,
memory access, interrupt latency, and
multirate model execution.

Connected Communication status between the host
PC and the target PC. Values are 'Yes'
and 'No'.

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value is
set from 'none' to 'detected' and the
current run is stopped. Correcting
CPUoverload requires either a faster
processor or a larger sample time.

get (target object)

16-39

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the total
execution time is displayed.

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value to
'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers for
TimeLog, StateLog, OutputLog, and TETLog.
StateLog and OutputLog can have one or
more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the number
of logged signals. The Signal Logging
Buffer Size box is located at Simulation
menu Configuration Parameters -> xPC
Target options pane.

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

Property Description Writable

get (target object)

16-40

Mode Type of Real-Time Workshop code
generation. Values are 'Real-Time
Singletasking', 'Real-Time
Multitasking', and 'Accelerate'. The
default value is 'Real-Time
Singletasking'.

Even if you select 'Real-Time
Multitasking', the actual mode can be
'Real-Time Singletasking'. This happens
if your model contains only one or two tasks
and the sample rates are equal.

NumLogWraps The number of times the circular buffer
wrapped. The buffer wraps each time the
number of samples exceeds MaxLogSamples.

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

OutputLog Storage in the MATLAB workspace for the
output or y-vector logged during execution
of the target application.

Property Description Writable

get (target object)

16-41

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set to
'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For example,
scalar, 1-by-2 vector, or 2-by-3 matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.

Yes

Scopes List of index numbers, with one index for
each scope.

SessionTime Time since the kernel started running on
your target PC. This is also the elapsed
time since you booted the target PC. Values
are in seconds.

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties for
a target object. Values are 'on' and 'off'.

Yes

Property Description Writable

get (target object)

16-42

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink block
the signal is from.

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution of
the target application.

Status Execution status of your target application.
Values are 'stopped' and 'running'.

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Simulation
menu Configuration Parameters dialog.

When the ExecTime reaches the StopTime,
the application stops running.

Yes

TETLog Storage in the MATLAB workspace for a
vector containing task execution times
during execution of the target application.

To enable logging of the TET, you need to
select the Log Task Execution Time check
box located at Simulation menu
Configuration Parameters -> xPC Target
options pane.

Property Description Writable

get (target object)

16-43

Examples List the value for the target object property StopTime. Notice that the property
name is a string, in quotation marks, and not case sensitive.

get(tg,'stoptime') or tg.get('stoptime')

ans = 0.2

See Also The xPC Target target object method set (target object).

The scope object methods get (scope object) and set (target object).

The built-in MATLAB functions get and set.

TimeLog Storage in the MATLAB workspace for the
time or t-vector logged during execution of
the target application.

ViewMode Display either all scopes or a single scope
on the target PC. Value is 'all' or a single
scope index. This property is active only if
the environment property TargetScope is
set to enabled.

Yes

Property Description Writable

getfilesize

16-44

16getfilesizePurpose Get the size (in bytes) of a file on the target PC

Syntax MATLAB command line

getfilesize(file_obj,file_ID)
file_obj.getfilesize(file_ID)

Arguments

Description Method of xpctarget.fs objects. From the host PC, gets the size (in bytes) of
the file identified by the file_ID file identifier on the target PC file system.

Examples Get the size of the file identifier h for the file system object fsys.

getfilesize(fsys,h) or fsys.getfilesize(h)

file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to get the size of.

getlog

16-45

16getlogPurpose Get all or part of the output logs from the target object

Syntax MATLAB command line

log = getlog(target_object, 'log_name', first_point,
number_samples, decimation)

Arguments

Description Use this function instead of the function get when you want only part of the
data.

Examples To get the first 1000 points in a log,

Out_log = getlog(tg, 'TETLog', 1, 1000)

To get every other point in the output log and plot values,

Output_log = getlog(tg, 'TETLog', 1, ,2)
Time_log = getlog(tg, 'TimeLog', 1, ,2)
plot(Time_log, Output_log)

See Also xPC Target target object method get (target object).

The procedure “Entering the Real-Time Workshop Parameters” on page 3-40.

log User-defined MATLAB variable.

'log_name' Values are TimeLog, StateLog, OutputLog, or
TETLog. This argument is required.

first_point First data point. The logs begin with 1. This
argument is optional. Default is 1.

number_samples Number of samples after the start time. This
argument is optional. Default is all points in log.

decimation 1 returns all sample points. n returns every nth
sample point. This argument is optional. Default
is 1.

getparam

16-46

16getparamPurpose Return the value of the specified parameter index from the target object

Syntax MATLAB command line

getparam(target_object, parameter_index)

Arguments

Description getparam returns the value of the parameter associated with
parameter_index.

Examples Get the value of parameter index 5.

getparam(tg, 5)
ans = 400

target_object Name of a target object. The default name is tg.

parameter_index Index number of the parameter.

getparamid

16-47

16getparamidPurpose Get a parameter index or property name from the parameter list

Syntax MATLAB command line

getparamid(target_object, 'block_name', 'parameter_name')

Arguments

Description getparamid returns the index of a parameter in the parameter list based on the
path to the parameter name. The names must be entered in full and are case
sensitive.

Examples Get the parameter property for the parameter Gain in the Simulink block
Gain1, incrementally increase the gain, and pause to observe the signal trace.

id = getparamid(tg, 'Subsystem/Gain1', 'Gain')
for i = 1 : 3
set(tg, id, i*2000);
pause(1);

end

Get the property index of a single block.

getparamid(tg, 'Gain1', 'Gain')
ans = 5

See Also The xPC Target scope object method getsignalid.

The xPC target M-file demo scripts listed in “xPC Target Demos” on page 6-6.

target_object Name of a target object. The default name is tg.

'block_name' Simulink block path without model name.

'parameter_name' Name of a parameter within a Simulink block.

getparamname

16-48

16getparamnamePurpose Get the block path and parameter name from the index list

Syntax MATLAB command line

getparamname(target_object, parameter_index)

Arguments

Description getparamname returns two argument strings, block path and parameter name,
from the index list for the specified parameter index.

Examples Get the block path and parameter name of parameter index 5.

[blockPath,parName]=getparamname(tg,5)
blockPath =

Signal Generator

parName =

Amplitude

target_object Name of a target object. The default name is tg.

parameter_index Index number of the parameter.

getscope

16-49

16getscopePurpose Get a scope object pointing to a scope already defined in the kernel

Syntax MATLAB command line

scope _object_vector = getscope(target_object, scope_number)

scope_object = target_object.getscope(scope_number)

Arguments target_object

Description getscope returns a scope object vector. If you try to get a nonexistent scope, the
result is an error. You can retrieve the list of existing scopes using the method
get(target_object, 'scopes') or target_object.scopes.

Examples If your Simulink model has an xPC Target scope block, a scope of type target
is created at the time the target application is downloaded to the target PC. To
change the number of samples, you need to create a scope object and then
change the scope object property NumSamples.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
sc1.NumSample = 500

target_object Name of a target object.

scope_number_vector Vector of existing scope indices listed in the target
object property Scopes. The vector can have only
one element.

scope_object MATLAB variable for a new scope object vector.
The vector can have only one scope object.

getscope

target
object

target
application

Host PC Target PC

scope

kernel
Scope engine

kernel
Scope engine

target
object

target
application

Host PC Target PC

scopescope
object

getscope

16-50

The following example gets the properties of all scopes on the target PC and
creates a vector of scope objects on the host PC. If the target object has more
than one scope, it create a vector of scope objects.

scvector = getscope(tg)

See Also xPC Target target object methods getxpcenv and remscope.

xPC target M-file demo scripts listed in “xPC Target Demos” on page 6-6.

getsignal

16-51

16getsignalPurpose Return the value of the specified signal index from the target object

Syntax MATLAB command line

getsignal(target_object, 'signal index')

Arguments

Description getsignal returns the value of the signal associated with signal_index.

Examples Get the value of signal index 2.

getsignal(tg, 2)
ans = -3.3869e+006

target_object Name of a target object. The default name is tg.

signal_index Index number of the signal.

getsignalid

16-52

16getsignalidPurpose Get the signal index or signal property from the signal list

Syntax MATLAB command line

getsignalid(target_object, 'signal_name')
tg.getsignalid('signal_name')

Arguments

Description getsignalid returns the index or name of a signal from the signal list, based
on the path to the signal name. The block names must be entered in full and
are case sensitive.

Examples Get the signal index for the single signal from the Simulink block Gain1.

getsignalid(tg, 'Gain1') or tg.getsignalid('Gain1')
ans = 6

See Also xPC Target target object method getparamid.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page 6-6.

target_object Name of an existing target object.

signal_name Enter the name of a signal from your Simulink
model. For blocks with a single signal, the
signal_name is equal to the block_name. For
blocks with multiple signals, xPC Target appends
S1, S2 ... to the block_name.

getsignalname

16-53

16getsignalnamePurpose Get the signal name from the index list

Syntax MATLAB command line

getsignalname(target_object, signal_index)

Arguments

Description getparamname returns one argument string, signal name, from the index list
for the specified signal index.

Examples Get the signal name of signal ID 2.

[sigName]=getsignalname(tg,2)
sigName =

Gain2

target_object Name of a target object. The default name is tg.

signal_index Index number of the signal.

getxpcenv

16-54

16getxpcenvPurpose List environment properties assigned to a MATLAB variable (environment
properties)

Syntax MATLAB Command Line

getxpcenv

Description Function to list environment properties. This function displays, in the
MATLAB Command Window, the property names, the current property
values, and the new property values set for the xPC Target environment.

The environment properties define communication between the host PC and
target PC, the type of C compiler and its location, and the type of target boot
floppy created during the setup process. You can view these properties using
the getxpcenv function or the xPC Target Explorer. An understanding of the
environment properties will help you to correctly configure the xPC Target
environment.

Environment Property Description

Version xPC Target version number. Read only.

CCompiler Values are 'Watcom' and 'VisualC'. From the
xPC Target Explorer window compiler list,
select either Watcom or VisualC.

CompilerPath Value is a valid compiler root directory. Enter
the path where you installed a Watcom C/C++
or Microsoft Visual C/C++ compiler.

If the path is invalid or the directory does not
contain the compiler, an error message appears
when you use the function updatexpcenv or
build a target application.

getxpcenv

16-55

TargetRAMSizeMB Values are 'Auto' and 'Manual'.

From the xPC Target Explorer window Target
RAM size list, select either Auto or Manual. If
you select Manual, enter the amount of RAM, in
megabytes, installed on the target PC. This
property is set by default to Auto.

Target RAM size defines the total amount of
installed RAM in the target PC. This RAM is
used for the kernel, target application, data
logging, and other functions that use the heap.

If Target RAM size is set to Auto, the target
application automatically determines the
amount of memory up to 64 MB. If the target PC
does not contain more than 64 MB of RAM, or
you do not want to use more than 64 MB, select
Auto. If the target PC has more than 64 MB of
RAM, and you want to use more than 64 MB,
select Manual, and enter the amount of RAM
installed in the target PC.

MaxModelSize Values are '1MB', '4MB', and '16MB'.

From the xPC Target Explorer window
Maximum model size list, select either 1 MB, 4
MB, or 16 MB.

Choosing the maximum model size reserves the
specified amount of memory on the target PC for
the target application. The remaining memory
is used by the kernel and by the heap for data
logging.

Selecting too high a value leaves less memory
for data logging. Selecting too low a value does
not reserve enough memory for the target
application and creates an error.

SystemFontSize Values are 'Small' and 'Large'.

Environment Property Description

getxpcenv

16-56

CANLibrary Values are 'None', '200 ISA', '527 ISA',
'1000 PCI', '1000 MB PCI', and 'PC104'.

From the xPC Target Explorer window CAN
Library list, select None, 200 ISA, 527 ISA, 1000
PCI, 1000 MB PCI, or PC104.

HostTargetComm Values are 'RS232' and 'TcpIp'.

From the xPC Target Explorer window Host
target communication list, select either RS232
or TCP/IP.

If you select RS232, you also need to set the
property RS232HostPort. If you select TCP/IP,
then you also need to set all properties that
start with TcpIp.

RS232HostPort Values are 'COM1' and 'COM2'.

From the xPC Target Explorer window Host
port list, select either COM1 or COM2 for the
connection on the host computer. xPC Target
automatically determines the COM port on the
target PC.

Before you can select an RS-232 port, you need
to set the HostTargetComm property to RS232.

RS232Baudrate Values are '115200', '57600', '38400',
'19200', '9600', '4800', '2400', and '1200'.

From the Baud rate list, select 115200, 57600,
38400, 19200, 9600, 4800, 2400, or 1200.

Environment Property Description

getxpcenv

16-57

TcpIpTargetAddress Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window Target PC
IP address box, enter a valid IP address for
your target PC. Ask your system administrator
for this value.

For example, 192.168.0.1.

TcpIpTargetPort Value is 'xxxxx'.

In the xPC Target Explorer window TcpIp
target port box, enter a value greater than
20000.

This property is set by default to 22222 and
should not cause any problems. The number is
higher than the reserved area (telnet, ftp, ...)
and it is only of use on the target PC.

TcpIpSubNetMask Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window LAN
subnet mask address text box, enter the
subnet mask of your LAN. Ask your system
administrator for this value.

For example, your subnet mask could be
255.255.255.0.

Environment Property Description

getxpcenv

16-58

TcpIpGateway Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window TcpIp
gateway address box, enter the IP address for
your gateway. This property is set by default to
255.255.255.255, which means that a gateway
is not used to connect to the target PC.

If you communicate with your target PC from
within a LAN that uses gateways, and your host
and target computers are connected through a
gateway, then you need to enter a value for this
property. If your LAN does not use gateways,
you do not need to change this property. Ask
your system administrator.

TcpIpTargetDriver Values are 'NE2000', 'SMC91C9X', 'I82559',
and 'RTLANCE'.

From the xPC Target Explorer window TcpIp
target driver list, select NE2000, SMC91C9X,
I82559, or RTLANCE. The Ethernet card provided
with xPC Target uses the NE2000 driver.

TcpIpTargetBusType Values are 'PCI' and 'ISA'.

From the xPC Target Explorer window TcpIp
target bus type list, select either PCI or ISA.
This property is set by default to PCI, and
determines the bus type of your target PC. You
do not need to define a bus type for your host
PC, which can be the same or different from the
bus type in your target PC.

If TcpIpTargetBusType is set to PCI, then the
properties TcpIpISAMemPort and TcpIpISAIRQ
have no effect on TCP/IP communication.

If you are using an ISA bus card, set
TcpIpTargetBusType to ISA and enter values
for TcpIpISAMemPort and TcpIpISAIRQ.

Environment Property Description

getxpcenv

16-59

TcpIpTargetISAMemPort Value is '0xnnnn'.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The values
of these properties must correspond to the
jumper settings or ROM settings on your ISA
bus Ethernet card.

On your ISA bus card, assign an IRQ and I/O
port base address by moving the jumpers on the
card.

Set the I/O port base address to around 0x300.
If one of these hardware settings leads to a
conflict in your target PC, choose another I/O
port base address and make the corresponding
changes to your jumper settings.

TcpIpTargetISAIRQ Value is 'n', where n is between 4 and 15.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The values
of these properties must correspond to the
jumper settings or ROM settings on the ISA-bus
Ethernet card.

On your ISA bus card, assign an IRQ and
I/O-port base address by moving the jumpers on
the card.

The MathWorks recommends setting the IRQ to
5, 10, or 11. If one of these hardware settings
leads to a conflict in your target PC, choose
another IRQ and make the corresponding
changes to your jumper settings.

Environment Property Description

getxpcenv

16-60

TargetScope Values are 'Disabled' and 'Enabled'.

From the xPC Target Explorer window Enable
target scope list, select either Enabled or
Disabled.

The property TargetScope is set by default to
Enabled. If you set TargetScope to Disabled,
the target PC displays information as text.

To use all the features of the target scope, you
also need to install a keyboard and mouse on the
target PC.

TargetMouse Values are 'None', 'PS2', 'RS232 COM1', and
'RS232 COM2'.

From the xPC Target Explorer window Target
mouse list, select None, PS2, RS232 COM1, or
RS232 COM2.

Before you can select a target mouse, you need
to set the Target Scope property to Enabled.

Target mouse allows you to disable or enable
mouse support on the target PC:

• If you do not connect a mouse to the target
PC, you need to set this property to None;
otherwise, the target application might not
behave properly.

• If the target PC supports PS/2 devices
(keyboard and mouse) and you connect a PS/2
mouse, set this property to PS2.

• If you connect a serial RS-232 mouse to the
target PC, select either RS232 COM1 or RS232
COM2 depending on which serial port you
attached the mouse to.

Environment Property Description

getxpcenv

16-61

Examples Return the xPC Target environment in the structure shown below. The output
in the MATLAB window is suppressed. The structure contains three fields for
property names, current property values, and new property values.

env = getxpcenv

env =
 propname: {1x25 cell}
 actpropval: {1x25 cell}
 newpropval: {1x25 cell}

Display a list of the environment property names, current values, and new
values.

env = getxpcenv

See Also xPC Target functions setxpcenv, updatexpcenv, xpcbootdisk, and xpcsetup

EmbeddedOption Values are 'Disabled' and 'Enabled'. This
property is read only.

Note that the xPC Target Embedded Option is
enabled only if you purchase an additional
license.

TargetBoot Values are 'BootFloppy', 'DOSLoader', and
'StandAlone'.

From the xPC Target Explorer window Target
boot mode list, select BootFloppy, DOSLoader,
or StandAlone.

If your license file does not include the license
for the xPC Target Embedded Option, the
Target boot mode box is disabled, with
BootFloppy as your only selection. With the
xPC Target Embedded Option licensed and
installed, you have the additional choices of
DOSLoader and StandAlone.

Environment Property Description

getxpcpci

16-62

16getxpcpciPurpose Determine which PCI boards are installed in the target PC

Syntax MATLAB Command Line

getxpcpci(target_object, 'type_of_boards')

Arguments

Description The getxpcpci function displays, in the MATLAB window, which PCI boards
are installed in the target PC. By default, getxpcpci displays this information
for the target object, tg. If you have multiple target PCs in your system, you can
call the getxpcpci function for a particular target object, target_object.

Only devices supported by driver blocks in the xPC Target Block library are
displayed. The information includes the PCI bus number, slot number,
assigned IRQ number, manufacturer name, board name, device type,
manufacturer PCI ID, and the board PCI ID itself.

For a successful query,

• The host-target communication link must be working. (The function
xpctargetping must return success before you can use the function
getxpcpci.)

• Either a target application is loaded or the loader is active. The latter is used
to query for resources assigned to a specific PCI device, which have to be
provided to a driver block dialog box prior to the model build process.

Examples Return the result of the query in the struct pcidevs instead of displaying it.
The struct pcidevs is an array with one element for each detected PCI device.
Each element combines the information by a set of field names. The struct
contains more information compared to the displayed list, such as the assigned
base addresses, the base, and subclass.

pcidevs = getxpcpci

Display the installed PCI devices, not only the devices supported by the xPC
Target Block Library. This includes graphics controller, network cards, SCSI
cards, and even devices that are part of the motherboard chip set (for example,
PCI-to-PCI bridges).

target_object Variable name to reference the target object.

type_of_boards Values are no arguments, 'all', and 'supported'.

getxpcpci

16-63

getxpcpci('all')

Display a list of the currently supported PCI devices in the xPC Target block
library. The result is displayed.

getxpcpci('supported')

When called with the 'supported' option, getxpcpci does not access the target
PC.

To display the list of PCI devices installed on the target PC, tg1, first create a
target object, tg1, for that target PC. Then, call getxpcpci with the 'all'
option. For example

tg1=xpctarget.xpc('RS232','COM1','115200')
getxpcpci(tg1, 'all')

load

16-64

16loadPurpose Download a target application to the target PC

Syntax MATLAB command line

load(target_object,'target_application')
target_object.load('target_application')

Arguments

Description Before using this function, the target PC must be booted with the xPC Target
kernel, and the target application must be built in the current working
directory on the host PC.

If an application was previously loaded, the old target application is first
unloaded before downloading the new target application. The method load is
called automatically after the Real-Time Workshop build process.

Examples Load the target application xpcosc represented by the target object tg.

load(tg,'xpcosc') or tg.load('xpcosc')
+tg or tg.start or start(tg)

See Also xPC Target function unload.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page 6-6.

target_object Name of an existing target object.

target_application Simulink model and target application name.

loadparamset

16-65

16loadparamsetPurpose Restore the parameter values saved in the specified file

Syntax MATLAB command line

loadparamset(target_object,'filename')
target_object.loadparamset('filename')

Arguments

Description loadparamset restores the target application parameter values saved in the
file filename. This file must be located on a local drive of the target PC. This
method assumes that you have a parameter file from a previous run of the
saveparamset method.

See Also xPC Target target object method saveparamset.

target_object Name of an existing target object.

filename Enter the name of the file that contains the saved
parameters.

mkdir

16-66

16mkdirPurpose Make a directory on the target PC

Syntax MATLAB command line

mkdir(file_obj,dir_name)
file_obj.mkdir(dir_name)

Arguments

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs objects.
From the host PC, makes a new directory in the current directory on the target
PC file system.

Note that to delete a directory from the target PC, you need to reboot the PC
into DOS or some other operating system and use a utility in that system to
delete the directory.

Examples Create a new directory, logs, in the target PC file system object fsys.

mkdir(fsys,logs) or fsys.mkdir(logs)

Create a new directory, logs, in the target PC FTP object f.

mkdir(f,logs) or f.mkdir(logs)

See Also xPC Target file object methods dir and pwd.

MATLAB mkdir function.

file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

dir_name Name of the directory to be created.

put

16-67

16putPurpose Copy a file from the host PC to the target PC

Syntax MATLAB command line

put(file_obj,file_name)
file_obj.put(file_name)

Arguments

Description Method of xpctarget.ftp objects. Copies a file from the host PC to the target
PC. file_name must be a file in the current directory of the host PC. The
method writes file_name to the target PC disk.

put might be slower than the get operation for the same file. This is expected
behavior.

Examples Copy the file data2.dat from the current directory of the host PC to the current
directory of the target PC FTP object f.

put(f,'data2.dat') or fsys.put('data2.dat')

See Also xPC Target file object methods dir and get (ftp).

file_obj Name of the xpctarget.ftp object.

file_name Name of the file to copy to the target PC.

pwd

16-68

16pwdPurpose Retrieve the current directory path of the target PC

Syntax MATLAB command line

pwd(file_obj)
file_obj.pwd

Arguments

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs objects.
Returns the pathname of the current target PC directory.

Examples Return the target PC current directory for the file system object fsys.

pwd(fsys) or fsys.pwd

Return the target PC current directory for the FTP object f.

pwd(f) or f.pwd

See Also xPC Target file object methods dir and mkdir.

MATLAB pwd function.

file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

reboot

16-69

16rebootPurpose Reboot the target PC

Syntax MATLAB command line

reboot(target_object)

Target PC command line

reboot

Arguments

Description reboot reboots the target PC, and if a target boot disk is still present, the xPC
target kernel is reloaded.

You can also use this method to reboot the target PC back to Windows after
removing the target boot disk.

Note This method might not work on some target hardware.

See Also xPC Target target object methods load and unload.

target_object Name of an existing target object.

remscope

16-70

16remscopePurpose Remove a scope from the target PC

Syntax MATLAB command line

remscope(target_object, scope_number_vector)
target_object.remscope(scope_number_vector)

remscope(target_object)
target_object.remscope

Target PC command line

remscope scope_number
remscope 'all'

Arguments

Description If a scope index is not given, the method remscope deletes all scopes on the
target PC. The method remscope has no return value. The scope object
representing the scope on the host PC is not deleted.

Note that you can only permanently remove scopes that are added with the
method addscope. This is a scope that is outside a model. If you remove a scope
that has been added through a scope block (the scope block is inside the model),
a subsequent run of that model creates the scope again.

target_object Name of a target object. The default name is tg.

scope_number_vector Vector of existing scope indices listed in the target
object property Scopes.

scope_number Single scope index.

remscope

kernel
Scope engine

target
object

target
application

Host PC Target PC

scopescope
object

kernel
Scope engine

target
object

target
application

Host PC Target PC

scope
object

remscope

16-71

Examples Remove a single scope.

remscope(tg,1) or tg.remscope(1)

Remove two scopes.

remscope(tg,[1 2]) or tg.remscope([1,2])

Remove all scopes.

remscope(tg) or tg.remscope

See Also xPC Target target object methods addscope and getscope.

xPC target M-file demo scripts listed in “xPC Target Demos” on page 6-6.

removefile

16-72

16removefilePurpose Remove a file from the target PC

Syntax MATLAB command line

removefile(file_obj,file_name)
file_obj.removefile(file_name)

Arguments

Description Method of xpctarget.fs objects Removes a file from the target PC file system.

Note You cannot recover this file once it is removed.

Examples Remove the file data2.dat from the target PC file system fsys.

removefile(fsys,'data2.dat') or fsys.removefile('data2.dat')

file_name Name of the file to remove from the target PC file
system.

file_obj Name of the xpctarget.fs object.

remsignal

16-73

16remsignalPurpose Remove signals from a scope represented by a scope object

Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments

Description remsignal removes signals from a scope object. The signals must be specified
by their indices, which you can retrieve using the target object method
getsignalid. If the scope_index_vector has two or more scope objects, the
same signals are removed from each scope. The argument signal_index is
optional; if it is left out, all signals are removed.

Note You must stop the scope before you can remove a signal from it.

Examples Remove signals 0 and 1 from the scope represented by the scope object sc1.

sc1.get('signals')

ans= 0 1

Remove signals from the scope on the target PC with the scope object property
Signals updated.

remsignal(sc1,[0,1]) or sc1.remsignal([0,1])

scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional, and if it is
left out all signals are removed.

signal_index Single signal index.

remsignal

16-74

See Also The xPC Target scope object method remsignal and the target object method
getsignalid.

rmdir

16-75

16rmdirPurpose Remove a directory from the target PC

Syntax MATLAB command line

rmdir(file_obj,dir_name)
file_obj.rmdir(dir_name)

Arguments

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs objects.
Removes a directory from the target PC file system.

Note You cannot recover this directory once it is removed.

Examples Remove the directory data2dir.dat from the target PC file system fsys.

rmdir(f,'data2dir.dat') or fsys.rmdir('data2dir.dat')

dir_name Name of the directory to remove from the target
PC file system.

file_obj Name of the xpctarget.fs object.

saveparamset

16-76

16saveparamsetPurpose Save the parameter values of the current target application

Syntax MATLAB command line

saveparamset(target_object,'filename')
target_object.saveparamset('filename')

Arguments

Description saveparamset saves the target application parameter values in the file
filename. This method saves the file on a local drive of the target PC (C:\ by
default). You can later reload these parameters with the loadparamset
function.

You might want to save target application parameter values if you change
these parameter values while the application is running in real time. Saving
these values enables you to easily recreate target application parameter values
from a number of application runs.

See Also xPC Target target object method loadparamset.

target_object Name of an existing target object.

filename Enter the name of the file to contain the saved
parameters.

set (scope object)

16-77

16set (scope object)Purpose Change property values for scope objects

Syntax MATLAB command line

set(scope_object_vector)

set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)

scope_object_vector.set('property_name1', property_value1, ..)

set(scope_object, 'property_name', property_value, . . .)

Arguments

Description Method for scope objects. Sets the properties of the scope object. Not all
properties are user writable. Scope object properties let you select signals to
acquire, set triggering modes, and access signal information from the target
application. You can view and change these properties using scope object
methods.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must both be row
vectors or both column vectors, and the corresponding values for properties in
property_name_vector are stored in property_value_vector.

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object,
property_name, property_value), it returns the values of the properties after
the indicated settings have been made.

scope_object Name of a scope object or a vector of scope objects.

'property_name' Name of a scope object property. Always use
quotation marks.

property_value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

set (scope object)

16-78

The properties for a scope object are listed in the following table. This table
includes descriptions of the properties and the properties you can change
directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated
with this scope object.

AutoRestart For scopes of type 'File', enable the
file scope to collect data up to the
number of samples (NumSamples), then
start over again, appending the new
data to the end of the signal data file.
Clear the AutoRestart check box to
have the scope of type 'File' collect
data up to Number of samples, then
stop.

If the named signal data file already
exists when you start the target
application, xPC Target overwrites the
old data with the new signal data.

For scopes of type 'Host' or 'Target',
this parameter has no effect.

Yes

Data Contains the output data for a single
data package from a scope.

For scopes of type 'Target' or 'File',
this parameter has no effect.

Decimation A number n, where every nth sample is
acquired in a scope window.

Yes

set (scope object)

16-79

Filename Provide a name for the file to contain
the signal data. By default, the target
PC writes the signal data to a file
named C:\data.dat for scope blocks.
Note that for scopes of type 'File'
created through the MATLAB interface,
there is no name initially assigned to
FileName. After you start the scope,
xPC Target assigns a name for the file
to acquire the signal data. This name
typically consists of the scope object
name, ScopeId, and the beginning
letters of the first signal added to the
scope.

For scopes of type 'Host' or 'Target',
this parameter has no effect.

Yes

Grid Values are 'on' and 'off'.

For scopes of type 'Host' or 'File',
this parameter has no effect.

Yes

Property Description Writable

set (scope object)

16-80

Mode For scopes of type 'Target', indicate
how a scope displays the signals. Values
are 'Numerical', 'Redraw' (default),
'Sliding', and 'Rolling'.

For scopes of type File, specify when a
file allocation table (FAT) entry is
updated. Values are 'Lazy' or
'Commit'. Both modes write the signal
data to the file. With 'Commit' mode,
each file write operation
simultaneously updates the FAT entry
for the file. This mode is slower, but the
file system always knows the actual file
size. With 'Lazy' mode, the FAT entry
is updated only when the file is closed
and not during each file write
operation. This mode is faster, but if the
system crashes before the file is closed,
the file system might not know the
actual file size (the file contents,
however, will be intact).

For scopes of type Host, this parameter
has no effect.

Yes

NumPrePostSamples For scopes of type 'Host' or 'Target',
this parameter is the number of
samples collected before or after a
trigger event. The default value is 0.
Entering a negative value collects
samples before the trigger event.
Entering a positive value collects
samples after the trigger event. If you
set TriggerMode to 'FreeRun', this
property has no effect on data
acquisition.

Property Description Writable

set (scope object)

16-81

NumSamples Number of contiguous samples
captured during the acquisition of a
data package. If the scope stops before
capturing this number of samples, the
scope has the collected data up to the
end of data collection, then has zeroes
for the remaining uncollected data.
Note that you should know what type of
data you are collecting, it is possible
that your data contains zeroes.

For scopes of type 'File', this
parameter works in conjunction with
the AutoRestart check box. If the
AutoRestart box is selected, the file
scope collects data up to Number of
Samples, then starts over again,
overwriting the buffer. If the
AutoRestart box is not selected, the file
scope collects data only up to Number
of Samples, then stops.

Yes

ScopeId A numeric index, unique for each scope.

Signals List of signal indices from the target
object to display on the scope.

StartTime Time within the total execution time
when a scope begins acquiring a data
package.

For scopes of type 'Target', this
parameter has no effect.

Property Description Writable

set (scope object)

16-82

Status Indicate whether data is being
acquired, the scope is waiting for a
trigger, the scope has been stopped
(interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for
being Triggered', 'Interrupted',
and 'Finished'.

Time Contains the time data for a single data
package from a scope.

TriggerLevel If TriggerMode is 'Signal', indicates
the value the signal has to cross to
trigger the scope and start acquiring
data. The trigger level can be crossed
with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values
are 'FreeRun' (default), 'Software',
'Signal', and 'Scope'.

Yes

Property Description Writable

set (scope object)

16-83

TriggerSample If TriggerMode is 'Scope', then
TriggerSample specifies which sample
of the triggering scope the current scope
should trigger on. For example, if
TriggerSample is 0 (default), the
current scope triggers on sample 0 (first
sample acquired) of the triggering
scope. This means that the two scopes
will be perfectly synchronized. If
TriggerSample is 1, the first sample
(sample 0) of the current scope will be
at the same instant as sample number 1
(second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting
TriggerSample to -1 means that the
current scope is triggered at the end of
the acquisition cycle of the triggering
scope. Thus, the first sample of the
triggering scope is acquired one sample
after the last sample of the triggering
scope.

TriggerScope If TriggerMode is 'Scope', identifies
the scope to use for a trigger. A scope
can be set to trigger when another scope
is triggered. You do this by setting the
slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies
the block output signal to use for
triggering the scope. You identify the
signal with a signal index from the
target object property Signal.

Yes

Property Description Writable

set (scope object)

16-84

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)

ans=

TriggerSlope If TriggerMode is 'Signal', indicates
whether the trigger is on a rising or
falling signal. Values are 'Either'
(default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is
displayed on the host computer or on
the target computer. Values are 'Host',
'Target', and 'File'.

WriteSize Enter the block size, in bytes, of the
data chunks. This parameter specifies
that a memory buffer, of length number
of samples (NumSamples), collect data in
multiples of WriteSize. By default, this
parameter is 512 bytes, which is the
typical disk sector size. Using a block
size that is the same as the disk sector
size provides optimal performance.

If you experience a system crash, you
can expect to lose an amount of data the
size of WriteSize.

For scopes of type 'Host' or 'Target',
this parameter has no effect.

Yes

YLimit Minimum and maximum y-axis values.
This property can be set to 'auto'.

For scopes of type 'Host' or 'File',
this parameter has no effect.

Yes

Property Description Writable

set (scope object)

16-85

 NumSamples: {}
 Decimation: {}
 TriggerMode: {5x1 cell}
 TriggerSignal: {}
 TriggerLevel: {}
 TriggerSlope: {4x1 cell}
 TriggerScope: {}
 TriggerSample: {}
 Signals: {}
 NumPrePostSamples: {}
 Mode: {5x1 cell}
 YLimit: {}
 Grid: {}

The property value for the scope object sc1 is changed to on:

sc1.set('grid', 'on') or set(sc1, 'grid', 'on')

See Also The xPC Target scope object method get (scope object). The target object
methods set (target object) and get (target object). The built-in
MATLAB functions get and set.

set (target object)

16-86

16set (target object)Purpose Change property values for target objects

Syntax MATLAB command line

set(target_object)

set(target_object, 'property_name1', 'property_value1',
'property_name2', 'property_value2', . . .)

target_object.set('property_name1', 'property_value1')

set(target_object, property_name_vector, property_value_vector)

target_object.property_name = property_value

Target PC command line - Commands are limited to the target object
properties stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating_point_number
sampletime = floating_point_number

Arguments

Description set sets the properties of the target object. Not all properties are user writable.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must both be row
vectors or both column vectors, and the corresponding values for properties in
property_name_vector are stored in property_value_vector. The writable

target_object Name of a target object.

'property_name' Name of a scope object property. Always use
quotation marks.

property_value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

parameter_name The letter p followed by the parameter index. For
example, p0, p1, p2.

set (target object)

16-87

properties for a target object are listed in the following table. This table
includes a description of the properties:

Property Description Writable

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value to
'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.

Yes

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties for
a target object. Values are 'on' and 'off'.

Yes

set (target object)

16-88

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Simulation
menu Configuration Parameters dialog.

When the ExecTime reaches the StopTime,
the application stops running.

Yes

ViewMode Display either all scopes or a single scope
on the target PC. Value is 'all' or a single
scope index. This property is active only if
the environment property TargetScope is
set to enabled.

Yes

Property Description Writable

set (target object)

16-89

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object,
property_name, property_value), it returns the value of the properties after
the indicated settings have been made.

Examples Get a list of writable properties for a scope object.

set(tg)

ans =

 StopTime: {}
 SampleTime: {}
 ViewMode: {}
 LogMode: {}
 ShowParameters: {}
 ShowSignals: {}

 Change the property ShowSignals to on.

tg.set('showsignals', 'on') or set(tg, 'showsignals', 'on')

As an alternative to the method set, use the target object property
ShowSignals. In the MATLAB window, type

tg.showsignals ='on'

See Also xPC Target target object method get (target object).

Scope object methods get (scope object) and set (scope object).

Built in MATLAB functions get and set.

xPC target M-file demo scripts listed in “xPC Target Demos” on page 6-6.

setparam

16-90

16setparamPurpose Set writable target object parameters to the specified values

Syntax MATLAB command line

setparam(target_object, 'parameter_value')

Arguments

Description Method of a target object. Set the value of the target parameter. This method
returns a structure that stores the parameter index, previous parameter
values, and new parameter values in the following fields:

• parIndexVec

• OldValues

• NewValues

Examples Set the value of parameter index 5 to 100.

setparam(tg, 5, 100)
ans =

parIndexVec: 5
OldValues: 400
NewValues: 100

target_object Name of an existing target object. The default
name is tg.

parameter_value Value for a target object parameter.

setxpcenv

16-91

16setxpcenvPurpose Change xPC Target environment properties (environment properties)

Syntax MATLAB Command Line

setxpcenv('property_name', 'property_value')
setxpcenv('prop_name1', 'prop_val1', 'prop_name2', 'prop_val2')
setxpcenv

Arguments

Description Function to enter new values for environment properties. If the new value is
different from the current value, the property is marked as having a new value.
Use the function updatexpcenv to change the current properties to the new
properties.

The environment properties define communication between the host PC and
target PC, the type of C compiler and its location, and the type of target boot
floppy created during the setup process. With the exception of the Version
property, you can set these properties using the xpcexplr function or the xPC
Target Explorer window. An understanding of the environment properties will
help you to correctly configure the xPC Target environment.

property_name Not case sensitive. Property names can be shortened
as long as they can be differentiated from the other
property names.

property_value Character string. Type setxpcenv without arguments
to get a listing of allowed values. Property values are
not case sensitive.

Environment Property Description

Version xPC Target version number. Read only.

CCompiler Values are 'Watcom' and 'VisualC'. From the
xPC Target Explorer window compiler list,
select either Watcom or VisualC.

setxpcenv

16-92

CompilerPath Value is a valid compiler root directory. Enter
the path where you installed a Watcom C/C++
or Microsoft Visual C/C++ compiler.

If the path is invalid or the directory does not
contain the compiler, an error message appears
when you use the function updatexpcenv or
build a target application.

TargetRAMSizeMB Values are 'Auto' and 'Manual'.

From the xPC Target Explorer window Target
RAM size list, select either Auto or Manual. If
you select Manual, enter the amount of RAM, in
megabytes, installed on the target PC. This
property is set by default to Auto.

Target RAM size defines the total amount of
installed RAM in the target PC. This RAM is
used for the kernel, target application, data
logging, and other functions that use the heap.

If Target RAM size is set to Auto, the target
application automatically determines the
amount of memory up to 64 MB. If the target PC
does not contain more than 64 MB of RAM, or
you do not want to use more than 64 MB, select
Auto. If the target PC has more than 64 MB of
RAM, and you want to use more than 64 MB,
select Manual, and enter the amount of RAM
installed in the target PC.

Environment Property Description

setxpcenv

16-93

MaxModelSize Values are '1MB', '4MB', and '16MB'.

From the xPC Target Explorer window
Maximum model size list, select either 1 MB, 4
MB, or 16 MB.

Choosing the maximum model size reserves the
specified amount of memory on the target PC for
the target application. The remaining memory
is used by the kernel and by the heap for data
logging.

Selecting too high a value leaves less memory
for data logging. Selecting too low a value does
not reserve enough memory for the target
application and creates an error.

SystemFontSize Values are 'Small' and 'Large'.

CANLibrary Values are 'None', '200 ISA', '527 ISA',
'1000 PCI', '1000 MB PCI', and 'PC104'.

From the xPC Target Explorer window CAN
Library list, select None, 200 ISA, 527 ISA, 1000
PCI, 1000 MB PCI, or PC104.

HostTargetComm Values are 'RS232' and 'TcpIp'.

From the xPC Target Explorer window Host
target communication list, select either RS232
or TCP/IP.

If you select RS232, you also need to set the
property RS232HostPort. If you select TCP/IP,
then you also need to set all properties that
start with TcpIp.

Environment Property Description

setxpcenv

16-94

RS232HostPort Values are 'COM1' and 'COM2'.

From the xPC Target Explorer window Host
port list, select either COM1 or COM2 for the
connection on the host computer. xPC Target
automatically determines the COM port on the
target PC.

Before you can select an RS-232 port, you need
to set the HostTargetComm property to RS232.

RS232Baudrate Values are '115200', '57600', '38400',
'19200', '9600', '4800', '2400', and '1200'.

From the Baud rate list, select 115200, 57600,
38400, 19200, 9600, 4800, 2400, or 1200.

TcpIpTargetAddress Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window Target PC
IP address box, enter a valid IP address for
your target PC. Ask your system administrator
for this value.

For example, 192.168.0.1.

TcpIpTargetPort Value is 'xxxxx'.

In the xPC Target Explorer window TcpIp
target port box, enter a value greater than
20000.

This property is set by default to 22222 and
should not cause any problems. The number is
higher than the reserved area (telnet, ftp, ...)
and it is only of use on the target PC.

Environment Property Description

setxpcenv

16-95

TcpIpSubNetMask Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window LAN
subnet mask address text box, enter the
subnet mask of your LAN. Ask your system
administrator for this value.

For example, your subnet mask could be
255.255.255.0.

TcpIpGateway Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window TcpIp
gateway address box, enter the IP address for
your gateway. This property is set by default to
255.255.255.255, which means that a gateway
is not used to connect to the target PC.

If you communicate with your target PC from
within a LAN that uses gateways, and your host
and target computers are connected through a
gateway, then you need to enter a value for this
property. If your LAN does not use gateways,
you do not need to change this property. Ask
your system administrator.

TcpIpTargetDriver Values are 'NE2000', 'SMC91C9X', 'I82559',
and 'RTLANCE'.

From the xPC Target Explorer window TcpIp
target driver list, select NE2000, SMC91C9X,
I82559, or RTLANCE. The Ethernet card provided
with xPC Target uses the NE2000 driver.

Environment Property Description

setxpcenv

16-96

TcpIpTargetBusType Values are 'PCI' and 'ISA'.

From the xPC Target Explorer window TcpIp
target bus type list, select either PCI or ISA.
This property is set by default to PCI, and
determines the bus type of your target PC. You
do not need to define a bus type for your host
PC, which can be the same or different from the
bus type in your target PC.

If TcpIpTargetBusType is set to PCI, then the
properties TcpIpISAMemPort and TcpIpISAIRQ
have no effect on TCP/IP communication.

If you are using an ISA bus card, set
TcpIpTargetBusType to ISA and enter values
for TcpIpISAMemPort and TcpIpISAIRQ.

TcpIpTargetISAMemPort Value is '0xnnnn'.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The values
of these properties must correspond to the
jumper settings or ROM settings on your ISA
bus Ethernet card.

On your ISA bus card, assign an IRQ and I/O
port base address by moving the jumpers on the
card.

Set the I/O port base address to around 0x300.
If one of these hardware settings leads to a
conflict in your target PC, choose another I/O
port base address and make the corresponding
changes to your jumper settings.

Environment Property Description

setxpcenv

16-97

TcpIpTargetISAIRQ Value is 'n', where n is between 4 and 15.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The values
of these properties must correspond to the
jumper settings or ROM settings on the ISA-bus
Ethernet card.

On your ISA bus card, assign an IRQ and
I/O-port base address by moving the jumpers on
the card.

The MathWorks recommends setting the IRQ to
5, 10, or 11. If one of these hardware settings
leads to a conflict in your target PC, choose
another IRQ and make the corresponding
changes to your jumper settings.

TargetScope Values are 'Disabled' and 'Enabled'.

From the xPC Target Explorer window Enable
target scope list, select either Enabled or
Disabled.

The property TargetScope is set by default to
Enabled. If you set TargetScope to Disabled,
the target PC displays information as text.

To use all the features of the target scope, you
also need to install a keyboard and mouse on the
target PC.

Environment Property Description

setxpcenv

16-98

TargetMouse Values are 'None', 'PS2', 'RS232 COM1', and
'RS232 COM2'.

From the xPC Target Explorer window Target
mouse list, select None, PS2, RS232 COM1, or
RS232 COM2.

Before you can select a target mouse, you need
to set the Target Scope property to Enabled.

Target mouse allows you to disable or enable
mouse support on the target PC:

• If you do not connect a mouse to the target
PC, you need to set this property to None;
otherwise, the target application might not
behave properly.

• If the target PC supports PS/2 devices
(keyboard and mouse) and you connect a PS/2
mouse, set this property to PS2.

• If you connect a serial RS-232 mouse to the
target PC, select either RS232 COM1 or RS232
COM2 depending on which serial port you
attached the mouse to.

Environment Property Description

setxpcenv

16-99

The function setxpcenv works similarly to the set function of the MATLAB
Handle Graphics® system. Call the function setxpcenv with an even number
of arguments. The first argument of a pair is the property name, and the second
argument is the new property value for this property.

Using the function setxpcenv without arguments returns a list of allowed
property values in the MATLAB window.

Examples List the current environment properties.

setxpcenv

Change the serial communication port of the host PC to COM2.

setxpcenv('HostCommPort','COM2')

 See Also The xPC Target functions getxpcenv, updatexpcenv, xpcbootdisk, and
xpcsetup. The procedures “Changing Environment Properties with a

EmbeddedOption Values are 'Disabled' and 'Enabled'. This
property is read only.

Note that the xPC Target Embedded Option is
enabled only if you purchase an additional
license.

TargetBoot Values are 'BootFloppy', 'DOSLoader', and
'StandAlone'.

From the xPC Target Explorer window Target
boot mode list, select BootFloppy, DOSLoader,
or StandAlone.

If your license file does not include the license
for the xPC Target Embedded Option, the
Target boot mode box is disabled, with
BootFloppy as your only selection. With the
xPC Target Embedded Option licensed and
installed, you have the additional choices of
DOSLoader and StandAlone.

Environment Property Description

setxpcenv

16-100

Graphical Interface” on page 6-3 and “Changing Environment Properties with
a Command-Line Interface” on page 6-5.

start (scope object)

16-101

16start (scope object)Purpose Start execution of a scope on a target PC

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector

start(getscope((target_object, signal_index_vector))

Target PC command line

startscope scope_index
startscope 'all'

Arguments

Description Method for a scope object. Starts a scope on the target PC represented by a
scope object on the host PC. This method does not necessarily start data
acquisition, which depends on the trigger settings. Before using this method,
you must create a scope. To create a scope, use the target object method
addscope or add xPC Target scope blocks to your Simulink model.

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope indices in
vector form.

scope_index Single scope index.

start (scope object)

16-102

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also The xPC Target target object methods getscope and stop (target object).
The scope object method stop (scope object).

start (target object)

16-103

16start (target object)Purpose Start execution of a target application on a target PC

Syntax MATLAB command line

start(target_object)
target_object.start
+target_object

Target PC command line

start

Arguments

Description Method of both target and scope objects. Starts execution of the target
application represented by the target object. Before using this method, the
target application must be created and loaded on the target PC. If a target
application is running, this command has no effect.

Examples Start the target application represented by the target object tg.

+tg
tg.start
start(tg)

See Also xPC Target target object methods stop (target object), load, and unload.

Scope object method stop (scope object).

target_object Name of a target object. The default name is tg.

stop (scope object)

16-104

16stop (scope object)Purpose Stop execution of a scope on the target PC

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object

stop(getscope(target_object, signal_index_vector))

Target PC command line

stopscope scope_index
stopscope 'all'

Arguments

Description Method for scope objects. Stops the scopes represented by the scope objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the command

allscopes = getscope(tg) or allscopes = tg.getscope.

stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope indices in
vector form.

scope_index Single scope index.

stop (scope object)

16-105

See Also The xPC Target target object methods getscope, stop (target object), and
start (target object). The scope object method start (scope object).

stop (target object)

16-106

16stop (target object)Purpose Stop execution of a target application on a target PC

Syntax MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target PC command line

stop

Arguments

Description Stops execution of the target application represented by the target object. If the
target application is stopped, this command has no effect.

Examples Stop the target application represented by the target object tg.

stop(tg) or tg.stop or -tg

See Also The xPC Target target object method start (target object). The scope object
methods stop (scope object) and start (scope object).

target_object Name of a target object.

targetping

16-107

16targetpingPurpose Test communication between a host and its target computers

Syntax MATLAB command line

targetping(target_object)
target_object.targetping

Arguments

Description Method of a target object. Use this method to ping a target PC from the host
PC. It returns either success or failed. If the xPC Target kernel is loaded,
running, and communication is working properly, this function returns the
value success.

This function works with both RS-232 and TCP/IP communication.

Examples Ping the communication between the host and the target object tg.

targetping(tg) or tg.targetping

See Also The xPC Target target object methods delete and xpctarget.xpc.

target_object Name of a target object.

trigger

16-108

16triggerPurpose Software-trigger the start of data acquisition for one or more scopes

Syntax MATLAB command line

trigger(scope_object_vector) or scope_object_vector.trigger

Arguments

Description Method for a scope object. If the scope object property TriggerMode has a value
of 'software', this function triggers the scope represented by the scope object
to acquire the number of data points in the scope object property NumSamples.

Note that only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition of one set of
samples, and plot data.

sc1 = tg.addscope('host',1) or sc1=addscope(tg,'host',1)
sc1.triggermode = 'software'

tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)

plot(sc1.time, sc1.data)

sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes
allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes
allscopes.trigger or trigger(allscopes)

scope_object_vector Name of a single scope object, name of a vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

unload

16-109

16unloadPurpose Remove the current target application from the target PC

Syntax MATLAB command line

unload(target_object)
target_object.unload

Arguments

Description Method of a target object. The kernel goes into loader mode and is ready to
download new target application from the host PC.

Examples Unload the target application represented by the target object tg.

unload(tg) or tg.unload

See Also xPC Target methods load and reboot.

target_object Name of a target object that represents a target
application.

updatexpcenv

16-110

16updatexpcenvPurpose Change current environment properties to equal new properties (environment
properties)

Syntax MATLAB Command Line

updatexpcenv

Description Function to update environment properties. Call the function updatexpcenv in
the following order:

1 Enter new properties with the function setxpcenv.

2 Type updatexpcenv to change the current properties to match the new
properties.

3 Create a target boot floppy with the function xpcbootdisk.

See Also The xPC Target functions setxpcenv, getxpcenv, xpcbootdisk, and xpcsetup.
The procedures “Changing Environment Properties with a Graphical
Interface” on page 6-3 and “Changing Environment Properties with a
Command-Line Interface” on page 6-5.

xpc

16-111

16xpc

Purpose Call the target object constructor, xpctarget.xpc

Note See “xpctarget.xpc” on page 16-117

xpcbootdisk

16-112

16xpcbootdiskPurpose Create xPC Target boot disk and confirm the current environment properties
(environment properties)

Syntax MATLAB Command Line

xpcbootdisk

Description Function to create an xPC target boot floppy for the current xPC Target
environment that has been updated with the function updatexpcenv. Creating
an xPC Target boot floppy consists of writing the correct bootable kernel image
onto the disk. You are asked to insert an empty formatted floppy disk into the
3.5 inch disk drive.

All existing files are erased by the function xpcbootdisk. If the inserted floppy
disk already is an xPC Target boot disk for the current environment settings,
this function exits without writing a new boot image to the floppy disk. At the
end, a summary of the creation process is displayed.

If you update the environment, you need to update the target boot floppy for
the new xPC environment with the function xpcbootdisk.

Examples To create a boot floppy disk, in the MATLAB window, type

xpcbootdisk

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, and
xpcsetup. The procedures “Changing Environment Properties with a
Graphical Interface” on page 6-3 and “Changing Environment Properties with
a Command-Line Interface” on page 6-5.

xpcexplr

16-113

16xpcexplrPurpose Open the xPC Target Explorer window

Syntax MATLAB Command Line

xpcexplr

Description This graphical user interface (GUI) allows you to

• Manage an xPC Target system

• Enter and change environment properties

• Create an xPC Target boot disk

• Build, download, and run target applications

• Monitor signals

• Tune parameters

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, and
xpcbootdisk. The procedures “Environment Properties for Serial
Communication” on page 2-21 and “Environment Properties for Network
Communication” on page 2-33.

xpcrctool

16-114

16xpcrctoolPurpose Open the remote control tool on the host PC

Syntax MATLAB Command Line

xpcrctool

Description This graphical user interface (GUI) allows you to control your target
application running on the target PC. It also allows you to add scopes, acquire
signal data, and tune parameters using the xPC Target Simulink browser.

See Also The xPC Target functions xpcscope, xpctgscope, and the procedure “Signal
Tracing” on page 3-7

xpcscope

16-115

16xpcscopePurpose Open a scope manager window on the host PC

Syntax MATLAB Command Line

xpcscope

Description This graphical user interface (GUI) allows you to define scopes that are
displayed on your host PC, choose signals, and control the data acquisition
process.

See Also The xPC Target function xpctgscope and the procedure “Signal Tracing” on
page 3-7

xpcsetup

16-116

16xpcsetupPurpose Open the Setup window

Syntax MATLAB Command Line

xpcsetup

Description This graphical user interface (GUI) allows you to

• Enter and change environment properties

• Create an xPC Target boot disk

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, and
xpcbootdisk. The procedures “Environment Properties for Serial
Communication” on page 2-21 and “Environment Properties for Network
Communication” on page 2-33.

xpctarget.xpc

16-117

16xpctarget.xpcPurpose Create a target object representing the target application

Syntax MATLAB command line

target_object = xpctarget.xpc('mode', 'arg1', 'arg2')

Arguments

Description Constructor of a target object. The target object represents the target
application and target PC. You make changes to the target application by
changing the target object using methods and properties.

If you have one target PC, or if you designate a target PC as the default one in
your system, use the syntax

target_object=xpctarget.xpc

target_object Variable name to reference the target object:

mode Optionally, enter the communication mode

TCPIP Enable TCP/IP connection with
target PC.

RS232 Enable RS-232 connection with
target PC.

arg1 Optionally, enter an argument based on the mode
value:

IP address If mode is 'TCPIP', enter the IP
address of the target PC.

COM port If mode is 'RS232', enter the host
COM port.

arg2 Optionally, enter an argument based on the mode
value:

Port If mode is 'TCPIP', enter the port
number for the target PC.

Baud rate If mode is 'RS232', enter the baud
rate for the connection between the
host and target PC.

xpctarget.xpc

16-118

If you have multiple target PCs in your system, use the following syntax to
create the additional target objects.

target_object=xpctarget.xpc('mode', 'arg1', 'arg2')

Examples Before you build a target application, you can check the connection between
your host and target computers by creating a target object, then using the
targetping method to check the connection.

tg = xpctarget.xpc

xPC Object

 Connected = Yes
 Application = loader

tg.targetping

ans =

success

If you have a second target computer for which you want to check the
connection, create a second target object. In the following example, the
connection with the second target computer is an RS-232 connection.

tg1=xpctarget.xpc('RS232','COM1','115200')

xPC Object
 Connected = Yes
 Application = loader

See Also xPC Target methods get (target object), set (target object), delete,
and targetping.

xpctargetping

16-119

16xpctargetpingPurpose Test communication between the host and target computers

Syntax MATLAB Command Line

xpctargetping

Examples Check for communication between the host PC and target PC.

xpctargetping

Description Pings the target PC from the host PC and returns either success or failed. If
the xPC Target kernel is loaded, running, and communication is working
properly, this function returns the value success.

This function works with both RS-232 and TCP/IP communication.

ans =
success

See Also The xPC Target procedure “Testing and Troubleshooting the Installation” on
page 2-45

xpctargetspy

16-120

16xpctargetspyPurpose Open a Real-Time xPC Target Spy window on the host PC

Syntax MATLAB Command Line

xpctargetspy(target_object)

Arguments

Description This graphical user interface (GUI) allows you to upload displayed data from
the target PC. By default, xpctargetspy opens a Real-Time xPC Target Spy
window for the target object, tg. If you have multiple target PCs in your
system, you can call the xpctargetspy function for a particular target object,
target_object.

The behavior of this function depends on the value for the environment
property TargetScope:

• If TargetScope is enabled, a single graphics screen is uploaded. The screen
is not continually updated because of a higher data volume when a target
graphics card is in VGA mode.

To update the host screen with another target screen, move the pointer into
the Real-Time xPC Target Spy window and left-click.

• If TargetScope is disabled, text output is transferred once every second to
the host and displayed in the window.

Examples To open the Real-Time xPC Target Spy window for a default target PC, tg, in
the MATLAB window, type

xpctargetspy

To open the Real-Time xPC Target Spy window for a target PC, tg1, in the
MATLAB window, type

xpctargetspy(tg1)

target_object Variable name to reference the target object.

xpctest

16-121

16xpctestPurpose Test the xPC Target installation

Syntax MATLAB Command Line

xpctest
xpctest('noreboot')

Arguments

Description xpctest is a series of xPC Target tests to check the correct functioning of the
following xPC Target tasks:

• Initiate communication between the host and target computers.

• Reboot the target PC to reset the target environment.

• Build a target application on the host PC.

• Download a target application to the target PC.

• Check communication between the host and target computers using
commands.

• Execute a target application.

• Compare the results of a simulation and the target application run.

xpctest('noreboot') skips the reboot test. Use this option if target hardware
does not support software rebooting.

Examples If the target hardware does not support software rebooting, or to skip the
reboot test, in the MATLAB window, type

xpctest('noreboot')

See Also Procedures “Testing and Troubleshooting the Installation” on page 2-45 and
“Test 1, Ping Target System Standard Ping” on page 2-47

'noreboot' Only one possible option. Skips the reboot test. Use
this option if the target hardware does not support
software rebooting. Value is 'noreboot'.

xpctgscope

16-122

16xpctgscopePurpose Open the xPC Target: Target Manager window

Syntax MATLAB Command Line

xpctgscope

Description This graphical user interface (GUI) allows you to define scopes that are
displayed on your target PC, choose signals, and control the data acquisition
process.

See Also The xPC Target function xpcscope and the procedure “Signal Tracing” on
page 3-7

xpcwwwenable

16-123

16xpcwwwenablePurpose Disconnect the target PC from the current client application

Syntax MATLAB Command Line

xpcwwwenable

Description Use this function to disconnect the target application from MATLAB before you
connect to the Web browser. You can also use this function to connect to
MATLAB after using a Web browser, or to switch to another Web browser.

xpcwwwenable

16-124

Index-1

Index

A
applications

with DOSLoader mode 5-16
with StandAlone mode 5-21

B
block parameters

parameter tuning with external mode 3-40
parameter tuning with xpcrctool 15-26

C
C compiler

setup dialog box 15-2
changing environment properties 6-5
changing parameters

using target object properties 3-38
xPC Target commands 3-38

changing properties
environment properties with xPC Target

Explorer 6-3
changing properties with xPC Target Setup

environment properties 15-8
command-line interface

aliasing 14-10
scope object 1-3
scope object methods 14-5
scope object property commands 14-8
target object methods 14-3
target object property commands 14-3
target objects 1-2
target PC 7-1

controlling target applications
with xpcrctool 15-12

creating
scope objects 15-14

creating application with DOSLoader mode 5-16
creating application with StandAlone mode 5-21
custom GUI 9-8

Dials & Gauges Blockset 9-8

D
data logging

with MATLAB 3-30
with remote control tool 15-25
with Web browser 3-34

DOSLoader mode 5-3
copying kernel 5-14
creating target application 5-16

E
embedded option

DOSLoader 5-3
introduction 5-2
StandAlone 5-3
updating xPC Target environment 5-9

entering environment properties
xPC Target Explorer 6-3
xPC Target Setup 15-8

environment
network communication 15-4
serial communication 15-2

Index

Index-2

environment properties
and StandAlone mode 5-17
changing through CLI 6-5
changing through xPC Target Explorer 6-3
changing through xPC Target Setup 15-8
list 6-2
loading 15-10
saving 15-10
updating through CLI 6-5
updating through xPC Target Explorer 6-3
updating through xPC Target Setup 15-8

external mode
parameter tuning 3-40

F
file system objects

methods 16-7
xpctarget.fs introduction 8-4

file systems
introduction 8-2
xpctarget.ftp 8-2

Fortran
S- function wrapper 12-9
wrapper S-function 12-9
xPC Target 12-2

FreeDOS
copying kernel 5-14
copying kernel/application 5-22

FTP objects
xpctarget.ftp introduction 8-4

functions
changing parameters 3-38
signal logging 3-30
signal monitoring 3-5
signal tracing 3-17

G
getting list of environment properties 6-2
getting parameter properties 3-39
getting signal properties 3-5

H
host scope viewer

xPC Target Explorer 3-16

I
interrupt mode

introduction 11-1

K
kernel

copying to flash memory 5-14
with DOSLoader mode 5-14
with StandAlone mode 5-21

L
list

environment properties 6-2
loading

environment properties 15-10

M
MATLAB

parameter tuning 3-38
signal logging 3-30
signal monitoring 3-5
signal tracing 3-17

methods
file system object 16-7

Index

Index-3

monitoring signals
xPC Target Explorer 3-2

N
network communication

environment 15-4
specifying environment properties 15-4

P
parameter tuning 3-40

overview 3-35
Web browser 3-42
with MATLAB 3-38
with remote control tool 15-26
with Simulink external mode 3-40
with xpcrctool 15-26

parameters
changing with commands 3-38
tuning with external mode 3-40
tuning with MATLAB 3-38
tuning with Web browser 3-42
tuning with xpcrctool 15-26

polling mode
introduction 11-1
setting up 11-6

properties
changing environment 6-5
environment list 6-2
updating environment 6-5

R
readxpcfile 8-10
remote control tool

controlling target application 15-12
parameter tuning 15-26
signal logging 15-25
signal tracing 15-14

S
saving environment properties 15-10
scope objects

command-line interface 1-3
commands 1-3
creating 15-14
list of properties with files 3-22
list of properties with targets 3-19
methods, see commands
properties 1-3

scopes
creating 3-8
stopping 3-15

selecting
signals for tracing 15-14

serial communication
environment 15-2

setting
network communication 15-4
serial communication 15-2

setup dialog box
C compiler 15-2

Setup window
using 6-2

Index

Index-4

signal logging
overview 3-28
with MATLAB 3-30
with remote control tool 15-25
with Web browser 3-34

signal monitoring
with MATLAB 3-5

signal tracing
overview 3-7
selecting signals 15-14
with MATLAB 3-17
with remote control tool 15-14
with Web browser 3-26

signals
adding 3-11

signals for tracing
selecting 15-14

Simulink external mode 3-40
parameter tuning 3-40

StandAlone mode 5-3
copying kernel/target application 5-22
creating kernel/application 5-21
updating environment properties 5-17

T
target application

control target applications xpcrctool 15-12
copying with StandAlone mode 5-22
remote control tool 15-12
with DOSLoader mode 5-16

target object properties
scopes of type file 3-21

target objects
changing parameters 3-38
command-line interface 1-2
commands 1-2
list of properties with files 3-21
methods, see commands
parameter properties 3-39
properties 1-2
signal properties 3-5

target PC
command-line interface 7-1
copying files with xpctarget.ftp 8-7
directory listings with xpctarget.ftp 8-5
disk information retrieval with xpctarget.fs

8-13
file content retrieval with xpctarget.fs 8-9
file conversion with xpctarget.fs 8-10
file information retrieval with xpctarget.fs

8-12
file removal with xpctarget.fs 8-11
file retrieval with xpctarget.ftp 8-6
list of open files with xpctarget.fs 8-11
manipulating scope object properties 7-6
manipulating scope objects 7-4
manipulating target object properties 7-3
using target application methods 7-2

Target PCs
installing, booting, and testing 4-8

task execution time (TET)
average 16-38
definition 3-33
in an example 3-34
logging 16-42
maximum 16-39
minimum 16-39
with the getlog function 16-45

TET, see task execution time

Index

Index-5

tracing signals
xPC Target Explorer 3-7

troubleshooting
accessing documentation 13-5
advanced xPC Target 13-12
BIOS settings 13-4
boot disk 13-5
CAN boards 13-14
changed stop time 13-21
communication issues 13-3
connection lost 13-16
CPU Overload 13-13
custom device drivers 13-20
device drivers 13-20
different sample times 13-18
Error -10 13-20
file system disabled 13-22
general I/O 13-12
general xPC Target hints and tips 13-2
getxpcpci 13-4
host PC MATLAB halted 13-2
installation, configuration, and tests 13-6
invalid file ID 13-20
lost connection 13-16
models with CAN boards 13-14
new releases 13-5
PCI board slot and bus 13-15
PCI boards 13-4
sample time differences 13-18
sample times 13-18
stand-alone xPC Target application 13-21
stop time change 13-21
tagging virtual blocks 13-21
target PC halted 13-3
target PC monitor view 13-5
updated xPC Target releases 13-4
virtual block tagging 13-21

xPC Target PC unable to boot 13-2
xpctargetspy 13-5
xpctest 13-6

tuning parameters
xPC Target Explorer 3-35

U
updating environment properties through CLI

6-5
updating environment properties through xPC

Target Explorer 6-3
updating environment properties through xPC

Target Setup 15-8
user interface model 9-19
using setup window 6-2
using xPC Target setup window 6-2

W
Web browser

connecting 10-2
parameter tuning 3-42
signal logging 3-34
signal tracing 3-26

X
xPC Target

BIOS settings 13-4
custom GUIs 9-8
downloading and running applications 4-11
troubleshooting 13-1
user interface model 9-19
Web browser 10-1

Index

Index-6

xPC Target Explorer
adding signals 3-11
configuring the host scope viewer 3-16
creating scopes 3-8
introduction 4-2
menu bar 4-17
monitoring signals 3-2
shortcut keys 4-17
stopping scopes 3-15
toolbar 4-17
tracing signals 3-7
tuning parameters 3-35

xPC Target Setup window 6-2
xpcrctool

See also remote control tool
signal tracing 15-14

xpctarget.fs

creation 8-4
introduction 8-2
methods 16-8
overview 8-8

xpctarget.fsbase

methods 16-7
xpctarget.ftp

creation 8-4
introduction 8-2
methods 16-8
overview 8-5

xpctcp2ser 10-5

	Target and Scope Objects
	Target Objects
	What Is a Target Object?

	Scope Objects
	What Is a Scope Object?

	Targets and Scopes in the MATLAB Interface
	Working with Target Objects
	Creating Target Objects
	Deleting Target Objects
	Displaying Target Object Properties
	Setting Target Object Properties from the Host PC
	Resetting Target Application Parameters to Previous Values
	Getting the Value of a Target Object Property
	Using the Method Syntax with Target Objects

	Working with Scope Objects
	Displaying Scope Object Properties for a Single Scope
	Displaying Scope Object Properties for All Scopes
	Setting the Value of a Scope Property
	Getting the Value of a Scope Property
	Using the Method Syntax with Scope Objects
	Acquiring Signal Data with Scopes of Type File
	Advanced Data Acquisition Topics

	Signals and Parameters
	Monitoring Signals
	Signal Monitoring with xPC Target Explorer
	Signal Monitoring with MATLAB

	Signal Tracing
	Signal Tracing with xPC Target Explorer
	Signal Tracing with MATLAB
	Signal Tracing with xPC Target Scope Blocks
	Signal Tracing with a Web Browser

	Signal Logging
	Signal Logging with xPC Target Explorer
	Signal Logging with MATLAB
	Signal Logging with a Web Browser

	Parameter Tuning
	Parameter Tuning with xPC Target Explorer
	Parameter Tuning with MATLAB
	Parameter Tuning with Simulink External Mode
	Parameter Tuning with a Web Browser
	Saving and Reloading Application Parameters with MATLAB

	xPC Target Explorer
	Introduction
	Before You Start

	Specifying Target PC Configurations
	Configuring Environment Parameters for Target PCs
	Creating a Target PC Boot Disk

	Preparing Target PCs for xPC Target System Use
	Installing Software, Booting a Target PC, and Testing the Target PC

	Downloading and Running Target Applications
	Changing the Prebuilt Target Application (DLM) Directory
	Downloading Target Applications to a Target PC
	Running the Target Application

	Control with xPC Target Explorer
	Manipulating Target Application Properties

	Menu Bar and Toolbar Contents and Shortcut Keys

	Embedded Option
	Introduction
	xPC Target Embedded Option Modes
	DOSLoader Mode Overview
	StandAlone Mode Overview
	Restrictions

	Embedded Option Setup
	Updating the xPC Target Environment
	Creating a DOS System Disk

	DOSLoader Target Setup
	Updating Environment Properties and Creating a Boot Disk
	Copying the Kernel to Flash Memory
	Creating a Target Application for DOSLoader Mode

	Stand-Alone Target Setup
	Updating Environment Properties
	Adding Target Scope Blocks to Stand-Alone Applications
	Creating a Kernel/Target Application
	Copying the Kernel/Target Application to Flash Disk

	Software Environment and Demos
	Using Environment Properties and Functions
	Getting a List of Environment Properties
	Changing Environment Properties with a Graphical Interface
	Changing Environment Properties with a Command-Line Interface

	xPC Target Demos
	To Locate or Edit a Demo Script

	Using the Target PC Command-Line Interface
	Target PC Command-Line Interface
	Using Target Application Methods on the Target PC
	Manipulating Target Object Properties from the Target PC
	Manipulating Scope Objects from the Target PC
	Manipulating Scope Object Properties from the Target PC
	Aliasing with Variable Commands on the Target PC

	Working with Target PC Files and File Systems
	Introduction
	FTP and File System Objects
	Using xpctarget.ftp Objects
	Listing the Contents of the Target PC Directory
	Retrieving a File from the Target PC to the Host PC
	Copying a File from the Host PC to the Target PC

	Using xpctarget.fs Objects
	Retrieving the Contents of a File from the Target PC to the Host PC
	Removing a File from the Target PC
	Getting a List of Open Files on the Target PC
	Getting Information about a File on the Target PC
	Getting Information about a Disk on the Target PC

	Graphical User Interfaces
	xPC Target Interface Blocks to Simulink Models
	Simulink User Interface Model
	Creating a Custom Graphical Interface
	To xPC Target Block
	From xPC Target Block

	Interface with Dials & Gauges Blockset
	Introduction to the Dials & Gauges Blockset
	Target Application Model Description
	Creating a Target Application Model
	Description of the User Interface Model
	Creating a User Interface Model
	Adding Dials & Gauges Blockset
	Creating a Target Application
	Running a Target Application with a User Interface Model

	xPC Target Web Browser Interface
	Web Browser Interface
	Connecting the Web Interface Through TCP/IP
	Connecting the Web Interface Through RS-232
	Using the Main Pane
	Changing WWW Properties
	Viewing Signals with a Web Browser
	Viewing Parameters with a Web Browser
	Changing Access Levels to the Web Browser

	Interrupts Versus Polling
	Polling Mode
	xPC Target Kernel Polling Mode
	Interrupt Mode
	Polling Mode
	Setting the Polling Mode
	Restrictions Introduced by Polling Mode
	Controlling the Target Application
	Polling Mode Performance

	xPC Target and Fortran
	Introduction
	Simulink Demos Directory
	Prerequisites
	Steps to Incorporate Fortran in Simulink for xPC Target

	Step-by-Step Example of Fortran and xPC Target
	Creating an xPC Target Atmosphere Model for Fortran
	Compiling Fortran Files
	Creating a C-MEX Wrapper S-Function
	Compiling and Linking the Wrapper S-Function
	Validating the Fortran Code and Wrapper S-Function
	Preparing the Model for the xPC Target Application Build
	Building and Running the xPC Target Application

	Troubleshooting
	General Troubleshooting Hints and Tips
	Installation, Configuration, and Test Troubleshooting
	Advanced Troubleshooting

	Target PC Command-Line Interface Reference
	Target PC Commands
	Target Object Methods
	Target Object Property Commands
	Scope Object Methods
	Scope Object Property Commands
	Aliasing with Variable Commands

	Obsoleted xPC Target User Interfaces
	xPC Setup
	Environment Properties for Serial Communication
	Environment Properties for Network Communication
	Creating an xPC Target Boot Disk
	Changing Environment Properties with a Graphical Interface
	Saving and Loading the Environment Properties

	Control with xPC Target Remote Control Tool
	Signal Tracing with xPC Target Remote Control Tool
	Signal Logging with xPC Target Remote Control Tool
	Parameter Tuning with xPC Target Remote Control Tool

	Function Reference
	Functions — Categorical List
	Software Environment
	GUI
	Test
	Target Objects
	Scope Objects
	File and File System Objects

	Functions — Alphabetical List

	Index

